Commit ab4545fa authored by Sylvain Thery's avatar Sylvain Thery

Merge cgogn:~vanhoey/CGoGN

parents bac3af1b 277688bd
......@@ -196,6 +196,12 @@ void decimate(
case S_hLightfieldKCL :
selector = new HalfEdgeSelector_LightfieldKCL<PFP>(map, position, approximators) ;
break ;
case S_hColorExperimental:
selector = new HalfEdgeSelector_ColorExperimental<PFP>(map, position, approximators, selected) ;
break ;
case S_hLFexperimental:
selector = new HalfEdgeSelector_LFexperimental<PFP>(map, position, approximators, selected) ;
break ;
}
for(typename std::vector<ApproximatorGen<PFP>*>::iterator it = approximators.begin(); it != approximators.end(); ++it)
......@@ -213,9 +219,6 @@ void decimate(
return ;
}
if (edgeErrors != NULL)
selector->getEdgeErrors(edgeErrors) ;
unsigned int nbVertices = map.template getNbOrbits<VERTEX>() ;
bool finished = false ;
Dart d ;
......@@ -257,6 +260,9 @@ void decimate(
callback_wrapper(callback_object, &nbVertices) ;
}
if (edgeErrors != NULL)
selector->getEdgeErrors(edgeErrors) ;
delete selector ;
for(typename std::vector<ApproximatorGen<PFP>*>::iterator it = approximators.begin(); it != approximators.end(); ++it)
......
......@@ -466,7 +466,7 @@ public:
(*errors)[d] = halfEdgeInfo[d].it->first ;
}
Dart dd = this->m_map.phi2(d) ;
if (halfEdgeInfo[dd].valid && halfEdgeInfo[dd].it->first > (*errors)[d])
if (halfEdgeInfo[dd].valid && halfEdgeInfo[dd].it->first < (*errors)[d])
{
(*errors)[dd] = halfEdgeInfo[dd].it->first ;
}
......@@ -475,10 +475,202 @@ public:
}
} ;
/*****************************************************************************************************************
* HALF-EDGE COLOR EXPERIMENTAL *
*****************************************************************************************************************/
template <typename PFP>
class HalfEdgeSelector_ColorExperimental : public EdgeSelector<PFP>
{
public:
typedef typename PFP::MAP MAP ;
typedef typename PFP::REAL REAL ;
typedef typename PFP::VEC3 VEC3 ;
private:
typedef struct
{
typename std::multimap<float,Dart>::iterator it ;
bool valid ;
static std::string CGoGNnameOfType() { return "ColorExperimentalHalfEdgeInfo" ; }
} QEMextColorHalfEdgeInfo ;
typedef NoMathIOAttribute<QEMextColorHalfEdgeInfo> HalfEdgeInfo ;
DartAttribute<HalfEdgeInfo> halfEdgeInfo ;
VertexAttribute<Utils::Quadric<REAL> > m_quadric ;
VertexAttribute<VEC3> m_pos, m_color ;
int m_approxindex_pos, m_attrindex_pos ;
int m_approxindex_color, m_attrindex_color ;
std::vector<Approximator<PFP, typename PFP::VEC3,DART>* > m_approx ;
std::multimap<float,Dart> halfEdges ;
typename std::multimap<float,Dart>::iterator cur ;
void initHalfEdgeInfo(Dart d) ;
void updateHalfEdgeInfo(Dart d) ;
void computeHalfEdgeInfo(Dart d, HalfEdgeInfo& einfo) ;
//void recomputeQuadric(const Dart d, const bool recomputeNeighbors = false) ;
void recomputeQuadric(const Dart d) ;
typename PFP::REAL computeExperimentalColorError(const Dart& v0, const Dart& v1) ;
public:
HalfEdgeSelector_ColorExperimental(MAP& m, VertexAttribute<typename PFP::VEC3>& pos, std::vector<ApproximatorGen<PFP>*>& approx, const FunctorSelect& select = allDarts) :
EdgeSelector<PFP>(m, pos, approx, select),
m_approxindex_pos(-1),
m_attrindex_pos(-1),
m_approxindex_color(-1),
m_attrindex_color(-1)
{
halfEdgeInfo = m.template addAttribute<HalfEdgeInfo, DART>("halfEdgeInfo") ;
m_quadric = m.template addAttribute<Utils::Quadric<REAL>, VERTEX>("QEMquadric") ;
}
~HalfEdgeSelector_ColorExperimental()
{
this->m_map.removeAttribute(m_quadric) ;
this->m_map.removeAttribute(halfEdgeInfo) ;
}
SelectorType getType() { return S_hColorExperimental ; }
bool init() ;
bool nextEdge(Dart& d) ;
void updateBeforeCollapse(Dart d) ;
void updateAfterCollapse(Dart d2, Dart dd2) ;
void updateWithoutCollapse() { }
void getEdgeErrors(EdgeAttribute<typename PFP::REAL> *errors)
{
assert(errors != NULL || !"EdgeSelector::setColorMap requires non null vertexattribute argument") ;
if (!errors->isValid())
std::cerr << "EdgeSelector::setColorMap requires valid edgeattribute argument" << std::endl ;
assert(halfEdgeInfo.isValid()) ;
TraversorE<typename PFP::MAP> travE(this->m_map) ;
for(Dart d = travE.begin() ; d != travE.end() ; d = travE.next())
{
(*errors)[d] = -1 ;
if (halfEdgeInfo[d].valid)
{
(*errors)[d] = halfEdgeInfo[d].it->first ;
}
Dart dd = this->m_map.phi2(d) ;
if (halfEdgeInfo[dd].valid && halfEdgeInfo[dd].it->first < (*errors)[d])
{
(*errors)[d] = halfEdgeInfo[dd].it->first ;
}
}
}
} ;
/*****************************************************************************************************************
* HALF-EDGE LF EXPERIMENTAL METRIC *
*****************************************************************************************************************/
template <typename PFP>
class HalfEdgeSelector_LFexperimental : public EdgeSelector<PFP>
{
public:
typedef typename PFP::MAP MAP ;
typedef typename PFP::REAL REAL ;
typedef typename PFP::VEC3 VEC3 ;
private:
typedef struct
{
typename std::multimap<float,Dart>::iterator it ;
bool valid ;
static std::string CGoGNnameOfType() { return "LightfieldExpHalfEdgeInfo" ; }
} LightfieldHalfEdgeInfo ;
typedef NoMathIOAttribute<LightfieldHalfEdgeInfo> HalfEdgeInfo ;
DartAttribute<HalfEdgeInfo> halfEdgeInfo ;
VertexAttribute<Utils::Quadric<REAL> > m_quadric ;
VertexAttribute<REAL> m_visualImportance ;
VertexAttribute<VEC3> m_avgColor ;
int m_approxindex_pos, m_attrindex_pos ;
int m_approxindex_FT, m_attrindex_FT ;
int m_approxindex_FB, m_attrindex_FB ;
int m_approxindex_FN, m_attrindex_FN ;
std::vector<unsigned int> m_approxindex_HF, m_attrindex_HF ;
unsigned int m_K ;
std::vector<Approximator<PFP, typename PFP::VEC3,DART>* > m_approx ;
std::multimap<float,Dart> halfEdges ;
typename std::multimap<float,Dart>::iterator cur ;
void initHalfEdgeInfo(Dart d) ;
void updateHalfEdgeInfo(Dart d) ;
void computeHalfEdgeInfo(Dart d, HalfEdgeInfo& einfo) ;
void recomputeQuadric(const Dart d) ;
REAL computeLightfieldError(const Dart& v0, const Dart& v1) ;
REAL computeSquaredLightfieldDifference(const Dart& d1, const Dart& d2) ;
public:
HalfEdgeSelector_LFexperimental(MAP& m, VertexAttribute<typename PFP::VEC3>& pos, std::vector<ApproximatorGen<PFP>*>& approx, const FunctorSelect& select = allDarts) :
EdgeSelector<PFP>(m, pos, approx, select),
m_approxindex_pos(-1),
m_attrindex_pos(-1),
m_approxindex_FT(-1),
m_attrindex_FT(-1),
m_approxindex_FB(-1),
m_attrindex_FB(-1),
m_approxindex_FN(-1),
m_attrindex_FN(-1),
m_K(0)
{
halfEdgeInfo = m.template addAttribute<HalfEdgeInfo, DART>("halfEdgeInfo") ;
m_quadric = m.template addAttribute<Utils::Quadric<REAL>, VERTEX>("QEMquadric") ;
m_avgColor = m.template getAttribute<typename PFP::VEC3, VERTEX>("color") ;
assert(m_avgColor.isValid()) ;
}
~HalfEdgeSelector_LFexperimental()
{
this->m_map.removeAttribute(m_quadric) ;
this->m_map.removeAttribute(halfEdgeInfo) ;
}
SelectorType getType() { return S_hLFexperimental ; }
bool init() ;
bool nextEdge(Dart& d) ;
void updateBeforeCollapse(Dart d) ;
void updateAfterCollapse(Dart d2, Dart dd2) ;
void updateWithoutCollapse() { }
void getEdgeErrors(EdgeAttribute<typename PFP::REAL> *errors)
{
assert(errors != NULL || !"EdgeSelector::setColorMap requires non null vertexattribute argument") ;
if (!errors->isValid())
std::cerr << "EdgeSelector::setColorMap requires valid edgeattribute argument" << std::endl ;
assert(halfEdgeInfo.isValid()) ;
TraversorE<typename PFP::MAP> travE(this->m_map) ;
for(Dart d = travE.begin() ; d != travE.end() ; d = travE.next())
{
(*errors)[d] = -1 ;
if (halfEdgeInfo[d].valid)
{
(*errors)[d] = halfEdgeInfo[d].it->first ;
}
Dart dd = this->m_map.phi2(d) ;
if (halfEdgeInfo[dd].valid && halfEdgeInfo[dd].it->first < (*errors)[d])
{
(*errors)[d] = halfEdgeInfo[dd].it->first ;
}
}
}
} ;
} // namespace Decimation
}
} // namespace Surface
} // namespace Algo
......
......@@ -1710,19 +1710,19 @@ typename PFP::REAL HalfEdgeSelector_LightfieldKCL<PFP>::computeLightfieldError(D
err += computeSquaredLightfieldDifference(v1,vi) ;
}
}
return err ;
*/
return err ;*/
// return computeSquaredLightfieldDifference(v0,v1) ;
Traversor2VVaE<MAP> tv(this->m_map,v1) ; // all vertices surrounding vertex v0
for (Dart vi = tv.begin() ; vi != tv.end() ; vi = tv.next())
{
VEC3 edgeL = this->m_position[v1] - this->m_position[vi] ;
err += sqrt(computeSquaredLightfieldDifference(v1,vi)) ;//* edgeL.norm() ;
err += sqrt(computeSquaredLightfieldDifference(v1,vi)) * edgeL.norm() ;
//std::cout << "1 : " << edgeL.norm() << std::endl ;
edgeL = this->m_position[v0] - this->m_position[vi] ;
//std::cout << "2 : " << edgeL.norm() << std::endl ;
err -= sqrt(computeSquaredLightfieldDifference(v0,vi)) ;//* edgeL.norm() ;
err -= sqrt(computeSquaredLightfieldDifference(v0,vi)) * edgeL.norm() ;
}
return fabs(err) ;
}
......@@ -1791,12 +1791,871 @@ typename PFP::REAL HalfEdgeSelector_LightfieldKCL<PFP>::computeSquaredLightfield
}
/************************************************************************************
* COLOR EXPERIMENTAL *
************************************************************************************/
template <typename PFP>
bool HalfEdgeSelector_ColorExperimental<PFP>::init()
{
MAP& m = this->m_map ;
} // namespace Decimation
// Verify availability of required approximators
unsigned int ok = 0 ;
for (unsigned int approxindex = 0 ; approxindex < this->m_approximators.size() ; ++approxindex)
{
assert(this->m_approximators[approxindex]->getType() == A_hQEM
|| this->m_approximators[approxindex]->getType() == A_hHalfCollapse
|| !"Approximator for selector (HalfEdgeSelector_ColorExperimental) must be of a half-edge approximator") ;
bool saved = false ;
for (unsigned int attrindex = 0 ; attrindex < this->m_approximators[approxindex]->getNbApproximated() ; ++ attrindex)
{
// constraint : 2 approximators in specific order
if(ok == 0 && this->m_approximators[approxindex]->getApproximatedAttributeName(attrindex) == "position")
{
++ok ;
m_approxindex_pos = approxindex ;
m_attrindex_pos = attrindex ;
m_pos = this->m_position ;
if (!saved)
{
m_approx.push_back(reinterpret_cast<Approximator<PFP, VEC3, DART>* >(this->m_approximators[approxindex])) ;
saved = true ;
}
}
else if(ok == 1 && this->m_approximators[approxindex]->getApproximatedAttributeName(attrindex) == "color")
{
++ok ;
m_approxindex_color = approxindex ;
m_attrindex_color = attrindex ;
m_color = m.template getAttribute<typename PFP::VEC3, VERTEX>("color") ;
assert(m_color.isValid() || !"EdgeSelector_QEMextColor: color attribute is not valid") ;
if (!saved)
{
m_approx.push_back(reinterpret_cast<Approximator<PFP, VEC3, DART>* >(this->m_approximators[approxindex])) ;
saved = true ;
}
}
}
}
if(ok != 2)
return false ;
CellMarker<VERTEX> vMark(m) ;
for(Dart d = m.begin(); d != m.end(); m.next(d))
{
if(!vMark.isMarked(d))
{
Utils::Quadric<REAL> q ; // create one quadric
m_quadric[d] = q ; // per vertex
vMark.mark(d) ;
}
}
DartMarker mark(m) ;
for(Dart d = m.begin(); d != m.end(); m.next(d))
{
if(!mark.isMarked(d))
{
Dart d1 = m.phi1(d) ; // for each triangle,
Dart d_1 = m.phi_1(d) ; // initialize the quadric of the triangle
Utils::Quadric<REAL> q(this->m_position[d], this->m_position[d1], this->m_position[d_1]) ;
m_quadric[d] += q ; // and add the contribution of
m_quadric[d1] += q ; // this quadric to the ones
m_quadric[d_1] += q ; // of the 3 incident vertices
mark.markOrbit<FACE>(d) ;
}
}
// Init multimap for each Half-edge
halfEdges.clear() ;
for(Dart d = m.begin(); d != m.end(); m.next(d))
{
initHalfEdgeInfo(d) ; // init the edges with their optimal info
} // and insert them in the multimap according to their error
cur = halfEdges.begin() ; // init the current edge to the first one
return true ;
}
template <typename PFP>
bool HalfEdgeSelector_ColorExperimental<PFP>::nextEdge(Dart& d)
{
if(cur == halfEdges.end() || halfEdges.empty())
return false ;
d = (*cur).second ;
return true ;
}
template <typename PFP>
void HalfEdgeSelector_ColorExperimental<PFP>::updateBeforeCollapse(Dart d)
{
MAP& m = this->m_map ;
const Dart& v0 = m.phi1(d) ;
Traversor2VVaE<MAP> tv(m,v0) ;
for (Dart v = tv.begin() ; v != tv.end() ; v = tv.next())
{
Traversor2VE<MAP> te(m,v) ;
for (Dart he = te.begin() ; he != te.end() ; he = te.next())
{
HalfEdgeInfo* edgeE = &(halfEdgeInfo[he]) ;
if(edgeE->valid)
{
edgeE->valid = false ;
halfEdges.erase(edgeE->it) ;
}
Dart de = m.phi2(he) ;
edgeE = &(halfEdgeInfo[de]) ;
if(edgeE->valid)
{
edgeE->valid = false ;
halfEdges.erase(edgeE->it) ;
}
}
}
// HalfEdgeInfo* edgeE = &(halfEdgeInfo[d]) ;
// if(edgeE->valid)
// halfEdges.erase(edgeE->it) ;
//
// edgeE = &(halfEdgeInfo[m.phi1(d)]) ;
// if(edgeE->valid) // remove all
// halfEdges.erase(edgeE->it) ;
//
// edgeE = &(halfEdgeInfo[m.phi_1(d)]) ; // the halfedges that will disappear
// if(edgeE->valid)
// halfEdges.erase(edgeE->it) ;
// // from the multimap
// Dart dd = m.phi2(d) ;
// assert(dd != d) ;
// if(dd != d)
// {
// edgeE = &(halfEdgeInfo[dd]) ;
// if(edgeE->valid)
// halfEdges.erase(edgeE->it) ;
//
// edgeE = &(halfEdgeInfo[m.phi1(dd)]) ;
// if(edgeE->valid)
// halfEdges.erase(edgeE->it) ;
//
// edgeE = &(halfEdgeInfo[m.phi_1(dd)]) ;
// if(edgeE->valid)
// halfEdges.erase(edgeE->it) ;
// }
}
/**
* Update quadric of a vertex
* Discards quadrics of d and assigns freshly calculated
* quadrics depending on the actual planes surrounding d
* @param dart d
*/
template <typename PFP>
void HalfEdgeSelector_ColorExperimental<PFP>::recomputeQuadric(const Dart d)
{
Dart dFront,dBack ;
Dart dInit = d ;
// Init Front
dFront = dInit ;
m_quadric[d].zero() ;
do {
// Make step
dBack = this->m_map.phi1(dFront) ;
dFront = this->m_map.phi2_1(dFront) ;
if (this->m_map.phi2(dFront) != dFront) { // if dFront is no border
m_quadric[d] += Utils::Quadric<REAL>(this->m_position[d],this->m_position[dBack],this->m_position[this->m_map.phi1(dFront)]) ;
}
} while(dFront != dInit) ;
}
///**
// * Update quadric of a vertex
// * Discards quadrics of d and assigns freshly calculated
// * quadrics depending on the actual planes surrounding d
// * @param dart d
// */
//template <typename PFP>
//void HalfEdgeSelector_ColorExperimental<PFP>::recomputeQuadric(const Dart d, const bool recomputeNeighbors)
//{
// Dart dFront,dBack ;
// Dart dInit = d ;
//
// // Init Front
// dFront = dInit ;
//
// m_quadric[d].zero() ;
//
// do {
// // Make step
// dBack = this->m_map.phi1(dFront) ;
// dFront = this->m_map.phi2_1(dFront) ;
//
// if (this->m_map.phi2(dFront) != dFront) { // if dFront is no border
// m_quadric[d] += Utils::Quadric<REAL>(this->m_position[d],this->m_position[dBack],this->m_position[this->m_map.phi1(dFront)]) ;
// }
//
// if (recomputeNeighbors)
// recomputeQuadric(dBack, false) ;
//
// } while(dFront != dInit) ;
//}
template <typename PFP>
void HalfEdgeSelector_ColorExperimental<PFP>::updateAfterCollapse(Dart d2, Dart dd2)
{
MAP& m = this->m_map ;
const Dart& v1 = d2 ;
recomputeQuadric(v1) ;
Traversor2VVaE<MAP> tv(m,v1) ;
for (Dart v = tv.begin() ; v != tv.end() ; v = tv.next())
{
recomputeQuadric(v) ;
}
for (Dart v = tv.begin() ; v != tv.end() ; v = tv.next())
{
Traversor2VE<MAP> te(m,v) ;
for (Dart e = te.begin() ; e != te.end() ; e = te.next())
{
updateHalfEdgeInfo(e) ;
updateHalfEdgeInfo(m.phi2(e)) ;
}
}
// MAP& m = this->m_map ;
//
// recomputeQuadric(d2, true) ;
//
// Dart vit = d2 ;
// do
// {
// updateHalfEdgeInfo(vit, true) ;
// Dart d = m.phi2(vit) ;
// if (d != vit)
// updateHalfEdgeInfo(d, true) ;
//
// updateHalfEdgeInfo(m.phi1(vit), true) ;
// d = m.phi2(m.phi1(vit)) ;
// if (d != m.phi1(vit))
// updateHalfEdgeInfo(d, true) ;
//
// Dart stop = m.phi2(vit) ;
// assert (stop != vit) ;
// Dart vit2 = m.phi12(m.phi1(vit)) ;
// do {
// updateHalfEdgeInfo(vit2, true) ;
// d = m.phi2(vit2) ;
// if (d != vit2)
// updateHalfEdgeInfo(d, true) ;
//
// updateHalfEdgeInfo(m.phi1(vit2), false) ;
// d = m.phi2(m.phi1(vit2)) ;
// if (d != m.phi1(vit2))
// updateHalfEdgeInfo(d, false) ;
//
// vit2 = m.phi12(vit2) ;
// } while (stop != vit2) ;
// vit = m.phi2_1(vit) ;
// } while(vit != d2) ;
cur = halfEdges.begin() ; // set the current edge to the first one
}
template <typename PFP>
void HalfEdgeSelector_ColorExperimental<PFP>::initHalfEdgeInfo(Dart d)
{
MAP& m = this->m_map ;
HalfEdgeInfo heinfo ;
if(m.edgeCanCollapse(d))
computeHalfEdgeInfo(d, heinfo) ;
else
heinfo.valid = false ;
halfEdgeInfo[d] = heinfo ;
}
template <typename PFP>
void HalfEdgeSelector_ColorExperimental<PFP>::updateHalfEdgeInfo(Dart d)
{
MAP& m = this->m_map ;
HalfEdgeInfo& heinfo = halfEdgeInfo[d] ;
if(!heinfo.valid && m.edgeCanCollapse(d))
computeHalfEdgeInfo(d, heinfo) ;
}
template <typename PFP>
void HalfEdgeSelector_ColorExperimental<PFP>::computeHalfEdgeInfo(Dart d, HalfEdgeInfo& heinfo)
{
MAP& m = this->m_map ;
Dart dd = m.phi1(d) ;
Utils::Quadric<REAL> quad ;
quad += m_quadric[d] ; // compute the sum of the
quad += m_quadric[dd] ; // two vertices quadrics
// compute all approximated attributes
for(typename std::vector<ApproximatorGen<PFP>*>::iterator it = this->m_approximators.begin() ;
it != this->m_approximators.end() ;
++it)
{
(*it)->approximate(d) ;
}
// Get all approximated attributes
// New position
const VEC3& newPos = this->m_approx[m_approxindex_pos]->getApprox(d,m_attrindex_pos) ; // get newPos
// New normal
const VEC3& newColor = this->m_approx[m_approxindex_color]->getApprox(d,m_attrindex_color) ; // get new color
const Dart& v0 = dd ;
const Dart& v1 = d ;
assert(newPos == m_pos[v1]) ;
assert(newColor == m_color[v1]) ;
// Compute errors
// Position
Utils::Quadric<REAL> quadGeom ;
quadGeom += m_quadric[d] ; // compute the sum of the
quadGeom += m_quadric[dd] ; // two vertices quadrics
//std::cout << quadGeom(newPos) / (alpha/M_PI + quadHF(newHF)) << std::endl ;
// sum of QEM metric and frame orientation difference
const REAL& err =
quadGeom(newPos) + // geom
computeExperimentalColorError(v0,v1) // color
;
//std::cout << quadGeom(newPos) / computeExperimentalColorError(v0,v1) << std::endl ;
// Check if errated values appear
if (err < -1e-6)
heinfo.valid = false ;
else
{
heinfo.it = this->halfEdges.insert(std::make_pair(std::max(err,REAL(0)), d)) ;
heinfo.valid = true ;
}
}
template <typename PFP>
typename PFP::REAL
HalfEdgeSelector_ColorExperimental<PFP>::computeExperimentalColorError(const Dart& v0, const Dart& v1)
{
MAP& m = this->m_map ;