Viewer.cpp 18.1 KB
Newer Older
Pierre Kraemer's avatar
Pierre Kraemer committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/*******************************************************************************
* CGoGN: Combinatorial and Geometric modeling with Generic N-dimensional Maps  *
* version 0.1                                                                  *
* Copyright (C) 2009, IGG Team, LSIIT, University of Strasbourg                *
*                                                                              *
* This library is free software; you can redistribute it and/or modify it      *
* under the terms of the GNU Lesser General Public License as published by the *
* Free Software Foundation; either version 2.1 of the License, or (at your     *
* option) any later version.                                                   *
*                                                                              *
* This library is distributed in the hope that it will be useful, but WITHOUT  *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or        *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License  *
* for more details.                                                            *
*                                                                              *
* You should have received a copy of the GNU Lesser General Public License     *
* along with this library; if not, write to the Free Software Foundation,      *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301 USA.           *
*                                                                              *
* Web site: https://iggservis.u-strasbg.fr/CGoGN/                              *
* Contact information: cgogn@unistra.fr                                        *
*                                                                              *
*******************************************************************************/
Pierre Kraemer's avatar
Pierre Kraemer committed
24

Pierre Kraemer's avatar
Pierre Kraemer committed
25
26
27
28
29
30
#include <iostream>
#include "Utils/os_spec.h"

#include "Utils/GLSLShader.h"
#include "Utils/glutwin.h"

31
#include "Topology/generic/parameters.h"
Pierre Kraemer's avatar
Pierre Kraemer committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#include "Topology/map/map2.h"
#include "Topology/generic/embeddedMap2.h"

#include "Geometry/vector_gen.h"

#include "Algo/Import/import.h"

#include "Algo/Render/map_glRender.h"
#include "Algo/Render/vbo_MapRender.h"

#include "Algo/Geometry/normal.h"
#include "Algo/Geometry/boundingbox.h"
#include "Algo/Geometry/area.h"
#include "Algo/Geometry/intersection.h"

#include "Algo/Modelisation/polyhedron.h"
#include "Algo/Modelisation/subdivision.h"
#include "Algo/Modelisation/extrusion.h"

#include "Algo/MC/marchingcubeGen.h"

#include "Topology/generic/ecell.h"

#include "Algo/Export/export.h"

using namespace CGoGN;

59
struct PFP: public PFP_STANDARD
Pierre Kraemer's avatar
Pierre Kraemer committed
60
{
Pierre Kraemer's avatar
Pierre Kraemer committed
61
	// definition of the map
Pierre Kraemer's avatar
Pierre Kraemer committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
	typedef EmbeddedMap2<Map2> MAP;
};


PFP::MAP myMap;
SelectorTrue allDarts;
PFP::TVEC3 position;
PFP::TVEC3 normal;


class myGlutWin: public Utils::SimpleGlutWin
{
public:
        Geom::Vec4f colDif;

        Geom::Vec4f colSpec;

        Geom::Vec4f colClear;

        Geom::Vec4f colNormal;

        float shininess;

        /**
         * position of object
         */
        Geom::Vec3f gPosObj;

        /**
         * width of object
         */
        float gWidthObj;

        /**
         * factor to apply to normal drawing
         */
        float normalScaleFactor;

        /**
         * redraw CB
         */
        void myRedraw();

        /**
         * keyboard CB
         */
        void myKeyboard(unsigned char keycode, int x, int y);

		 /**
		 * inverse the normal when computing normal
		 */
        bool invertedNormals;

        /**
         * inverse object for culling
         */
        bool invertedObject;

        /**
         * rendering normals ?
         */
        bool renderNormal;

        /**
         * rendering lines ?
         */
        bool renderLines;

        /**
        * aide affichee
        */
        bool aff_help;

        /**
         * style of rendering
         */
        int renderStyle;

140
        Algo::Render::VBO::MapRender_VBO* m_render;
Pierre Kraemer's avatar
Pierre Kraemer committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

        /**
         * render mode enum
         */
        enum { CLEAR=1, LINE, FLAT, GOURAUD, PHONG, NORMAL,NONE };

	myGlutWin(	int* argc, char **argv, int winX, int winY) :
				SimpleGlutWin(argc,argv,winX,winY),
				renderNormal(false),
				renderLines(false),
				aff_help(true)
        {
			if (this->shaderOk) shaders[0].loadShaders("phong_vs.txt","phong_ps.txt");

//			m_cb = new Algo::Render::VBO::VBO_CB_PositionNormal<PFP>(myMap);
156
//			m_render = new Algo::Render::VBO::MapRender_VBO(myMap, allDarts, m_cb);
Pierre Kraemer's avatar
Pierre Kraemer committed
157
158
159
160
//
//			m_render->initBuffers();
//			m_render->updateData(Algo::Render::VBO::POSITIONS, position );
//			m_render->updateData(Algo::Render::VBO::NORMALS, normal );
161
162
//			m_render->initPrimitives<PFP>(myMap, good, Algo::Render::VBO::TRIANGLES);
//			m_render->initPrimitives<PFP>(myMap, good, Algo::Render::VBO::LINES);
Pierre Kraemer's avatar
Pierre Kraemer committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

		}
};


void myGlutWin::myRedraw(void)
{

        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
        glPushMatrix();

        float sc = 50./gWidthObj;
        glScalef(sc,sc,sc);
        glTranslatef(-gPosObj[0],-gPosObj[1],-gPosObj[2]);

        glEnable(GL_LIGHTING);
    	glEnable(GL_COLOR_MATERIAL);
    	glColorMaterial(GL_FRONT_AND_BACK,GL_DIFFUSE);
    	glColor3f(0.7f,0.8f,1.0f);

    	glMaterialfv(GL_FRONT,GL_SPECULAR,colSpec.data());
    	glMaterialf( GL_FRONT, GL_SHININESS, shininess );

    	Algo::Geometry::computeNormalVertices<PFP>(myMap, position, normal) ;

    	glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
//        m_render->draw(Algo::Render::VBO::TRIANGLES);
       	Algo::Render::Direct::renderTriQuadPoly<PFP>(myMap, Algo::Render::Direct::FLAT, 0.9 , position, normal, normal);

        glDisable(GL_LIGHTING);
        glColor3f(0.0f,0.0f,0.0f);
//        m_render->draw(Algo::Render::VBO::LINES);
        glPolygonMode(GL_FRONT_AND_BACK,GL_LINE);
      	Algo::Render::Direct::renderTriQuadPoly<PFP>(myMap, Algo::Render::Direct::LINE, 1.0, position, normal);
//      	glPointSize(5.0f);
//      	glColor3f(1.0f,.0f,.0f);
//        glPolygonMode(GL_FRONT_AND_BACK,GL_POINT);
//      	Algo::Render::Direct::renderTriQuadPoly<PFP>(myMap, Algo::Render::Direct::LINE, 0.9, position, normal);


//    	Algo::Render::Direct::renderTriQuadPoly<PFP>(myMap, Algo::Render::Direct::FLAT, 0.9, position, normal);
//		TESTED OK


        glPopMatrix();

        // a faire en dernier pour que ca dessine au dessus
        if (aff_help) {
                glColor3f(1.0f,1.0f,1.0f);
                printString2D(10,20,"Keys:\n----\nf : flat (DL)\ng: gouraud (DL) \np: phong ( strip DL)\na: dual\nu: simplification (nbfaces/2)\nC : catmullclark\nR : square3\nL: Loop\nO: inverse objet\nn: affiche normales\nZ/z: shininess\nD/d: focale\nv: calcul fps\nh: affiche l'aide");
        }

}

void myGlutWin::myKeyboard(unsigned char keycode, int, int)
{

	switch (keycode)
	{
	case 'a':
		{
			unsigned int end = position.end();
			for(unsigned int it = position.begin(); it !=  end; position.next(it))
			{
				position[it] += normal[it] * 0.1;
			}

			m_render->updateData(Algo::Render::VBO::POSITIONS, position );
		}
		break;

	case 'z':
		{
			unsigned int end = normal.end();
			for(unsigned int it = normal.begin(); it !=  end; normal.next(it))
			{
				normal[it] *= -1.0f;
			}

			m_render->updateData(Algo::Render::VBO::NORMALS, normal );
		}
		break;

	case 's':
		{
			GLint t1 = glutGet(GLUT_ELAPSED_TIME);
			Algo::Modelisation::CatmullClarkSubdivision<PFP, AttributeHandler<PFP::VEC3>, PFP::VEC3>(myMap, position);
			GLint t2 = glutGet(GLUT_ELAPSED_TIME);
			GLfloat seconds = (t2 - t1) / 1000.0f;
			std::cout << "catmull-clark: "<< seconds << "sec" << std::endl;

			Algo::Geometry::computeNormalVertices<PFP>(myMap, position, normal) ;

			break;
		}

	case 'l':
		{
			GLint t1 = glutGet(GLUT_ELAPSED_TIME);
			Algo::Modelisation::LoopSubdivision<PFP, AttributeHandler<PFP::VEC3>, PFP::VEC3>(myMap, position);
			Algo::Modelisation::LoopSubdivision<PFP, AttributeHandler<PFP::VEC3>, PFP::VEC3>(myMap, position);
			Algo::Modelisation::LoopSubdivision<PFP, AttributeHandler<PFP::VEC3>, PFP::VEC3>(myMap, position);
			Algo::Modelisation::LoopSubdivision<PFP, AttributeHandler<PFP::VEC3>, PFP::VEC3>(myMap, position);
			Algo::Modelisation::LoopSubdivision<PFP, AttributeHandler<PFP::VEC3>, PFP::VEC3>(myMap, position);
			GLint t2 = glutGet(GLUT_ELAPSED_TIME);
			GLfloat seconds = (t2 - t1) / 1000.0f;
			std::cout << "loop: "<< seconds << "sec" << std::endl;

			Algo::Geometry::computeNormalVertices<PFP>(myMap, position, normal, allDarts) ;

			break;
		}

	case 'd':
		{
			GLint t1 = glutGet(GLUT_ELAPSED_TIME);
			Algo::Modelisation::Sqrt3Subdivision<PFP, AttributeHandler<PFP::VEC3>, PFP::VEC3>(myMap, position);
			GLint t2 = glutGet(GLUT_ELAPSED_TIME);
			GLfloat seconds = (t2 - t1) / 1000.0f;
			std::cout << "dual: "<< seconds << "sec" << std::endl;

			Algo::Geometry::computeNormalVertices<PFP>(myMap, position, normal, allDarts) ;

			break;
		}
	}

	glutPostRedisplay();
}



class Scal3D
{
protected:
	int m_size;
	int m_mid;
public:
	Scal3D(int size) : m_size(size), m_mid(size/2) {}
	float getVoxSizeX() {return 1.0f;}
	float getVoxSizeY() {return 1.0f;}
	float getVoxSizeZ() {return 1.0f;}

	long getWidthX() { return m_size;}
	long getWidthY() { return m_size;}
	long getWidthZ() { return m_size;}

	float getVoxel(long x, long y, long z)
	{
		float  rad = sqrt(float((x-m_mid)*(x-m_mid) + (y-m_mid)*(y-m_mid) + (z-m_mid)*(z-m_mid)));
		float  radx = sqrt(float((y-m_mid)*(y-m_mid) + (z-m_mid)*(z-m_mid)));
		float  rady = sqrt(float((x-m_mid)*(x-m_mid) + (z-m_mid)*(z-m_mid)));
		float  radz = sqrt(float((x-m_mid)*(x-m_mid) + (y-m_mid)*(y-m_mid)));

		float val = 1.0f - rad/m_mid;

		if ((val <0.0f) || (radz < m_size/10)||(rady < m_size/8)||(radx < m_size/6))
			return 0.0f;
		return val;
	}
};




int main(int argc, char **argv)
{

//    GLint t1 = glutGet(GLUT_ELAPSED_TIME);

	if (argc == 1)
	{
Pierre Kraemer's avatar
Pierre Kraemer committed
335
336
337
		position = myMap.addAttribute<Geom::Vec3f>(VERTEX_ORBIT, "position");

		std::cout <<"XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"<<std::endl;
Pierre Kraemer's avatar
Pierre Kraemer committed
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
//		typedef uint8 DATATYPE;
//		Algo::MC::Image<DATATYPE> myImg;
//		myImg.loadPNG3D("liver.png");
//
//		std::cout << "Image chargee"<<std::endl;
//		std::cout << myImg.getWidthX() <<"x"<< myImg.getWidthY() <<"x"<< myImg.getWidthZ() << "voxels"<<std::endl;
//
//		// ajouté pour vérifier que ça marche sur les images non bool
//// 		myImg.Blur3();
//// 		std::cout << "Image lissee"<<std::endl;
//
//		// fonction de fenetrage de type superieur à ...
//		Algo::MC::WindowingGreater<DATATYPE> myWindFunc;
//
//		// valeur utilisee 0 (donc objet = tout ce qui est diff de 0)
//		myWindFunc.setIsoValue(DATATYPE(127));
//
//		// instanciation du mc
//		std::cout << "mc init"<<std::endl;
//		Algo::MC::MarchingCube<DATATYPE,Algo::MC::WindowingGreater,PFP> mc(&myImg, &myMap, position, myWindFunc, false);
//	//	MarchingCube<DATATYPE,WindowingDiff> mc(&myImg, &myMap, myWindFunc, false);
//
//		// realisation du maillage
//		mc.simpleMeshing();
//		std::cout << "mc ok"<<std::endl;

//		typedef float DATATYPE;
//
//		// fonction de fenetrage de type superieur à ...
//		Algo::MC::WindowingGreater<DATATYPE> myWindFunc;
//
//		// valeur utilisee 0 (donc objet = tout ce qui est diff de 0)
//		myWindFunc.setIsoValue(DATATYPE(0.32f));
//
//		Scal3D myImg(256);
//
//		std::cout << "mc init"<<std::endl;
//		Algo::MC::MarchingCubeGen<DATATYPE, Scal3D, Algo::MC::WindowingGreater,PFP> mc(&myImg, &myMap, position, myWindFunc, false);
//
//		//realisation du maillage
//		mc.simpleMeshing();

		std::vector<Geom::Vec3f> objV;
		objV.push_back(Geom::Vec3f(-1,-1,37));
		objV.push_back(Geom::Vec3f(-1,-2,37));
		objV.push_back(Geom::Vec3f(+1,-2,37));
		objV.push_back(Geom::Vec3f(+1,-1,37));
		objV.push_back(Geom::Vec3f(+2,-1,37));
		objV.push_back(Geom::Vec3f(+2,+1,37));
		objV.push_back(Geom::Vec3f(+1,+1,37));
		objV.push_back(Geom::Vec3f(+1,+2,37));
		objV.push_back(Geom::Vec3f(-1,+2,37));
		objV.push_back(Geom::Vec3f(-1,+1,37));
		objV.push_back(Geom::Vec3f(-2,+1,37));
		objV.push_back(Geom::Vec3f(-2,-1,37));

		std::vector<Geom::Vec3f> pathV;
		std::vector<float> pathRadius;
		pathV.push_back(Geom::Vec3f(0,0,0));		pathRadius.push_back(1.);
		pathV.push_back(Geom::Vec3f(0,0,10));		pathRadius.push_back(1.5);
		pathV.push_back(Geom::Vec3f(10,0,10));		pathRadius.push_back(1.9);
		pathV.push_back(Geom::Vec3f(10,10,10));		pathRadius.push_back(2.5);
		pathV.push_back(Geom::Vec3f(10,10,20));		pathRadius.push_back(3.0);
		pathV.push_back(Geom::Vec3f(10,11,25));		pathRadius.push_back(1.0);
		pathV.push_back(Geom::Vec3f(11,13,30));		pathRadius.push_back(1.5);
		pathV.push_back(Geom::Vec3f(0,0,40));		pathRadius.push_back(.5);
		pathV.push_back(Geom::Vec3f(-20,-10,0.0));	pathRadius.push_back(1.9);
		pathV.push_back(Geom::Vec3f(-10,0 ,-20));	pathRadius.push_back(1.3);
		pathV.push_back(Geom::Vec3f(5,0 ,-10));		pathRadius.push_back(1.);
	//	Algo::Modelisation::extrusion<PFP>(myMap, objV, Geom::Vec3f(0.0,0.0,37.0), Geom::Vec3f(0.0,0.0,1.0),false, pathV, false);
		Algo::Modelisation::extrusion_scale_prim<PFP>(myMap, position, objV, Geom::Vec3f(0.0,0.0,37.0), Geom::Vec3f(0.0,0.0,1.0),false, pathV, false, pathRadius);
	}

//	{
//		Algo::Modelisation::Primitive<PFP> prim(myMap,position);
//
//		prim.grid_topo(2,2);
//
//		prim.embedGrid(8.0f,8.0f);
//
//		Algo::Modelisation::Primitive<PFP> prim2(myMap,position);
//
//		prim2.tore_topo(7,4);
//		prim2.embedTore(25.0f,5.0f);
//
//		GLint t1 = glutGet(GLUT_ELAPSED_TIME);
//
//		myMap.getAttributeContainer(VERTEX_ORBIT).toggleProcess(position);
////		myMap.getAttributeContainer(VERTEX_ORBIT).toggleProcess(idPipo);
//
//		PFP::MAP::EVertex::setContainer(myMap.getAttributeContainer(VERTEX_ORBIT));
//		PFP::MAP::EVertex::setMap(myMap);
//		PFP::MAP::EVertex ec(0);
//
//		GLint t2 = glutGet(GLUT_ELAPSED_TIME);
//			GLfloat seconds = (t2 - t1) / 1000.0f;
//			std::cout << "triangulation: "<< seconds << "sec" << std::endl;
//
//		Marker m = myMap.getNewMarker(VERTEX_ORBIT);
//		myMap.markEmbVertex(myMap.begin(),m);
//
//		Dart xd = myMap.alpha1(myMap.begin());
//		if (myMap.isMarkedEmbVertex(xd,m))
//		{
//			std::cout << "Marke"<< std::endl;
//		}
//		xd = myMap.phi2(xd);
//		if (myMap.isMarkedEmbVertex(xd,m))
//		{
//			std::cout << "Marke aussi"<< std::endl;
//		}
//
//		myMap.clearEmbMarkers(m,VERTEX_ORBIT);
//		myMap.releaseEmbMarker(m,VERTEX_ORBIT);
//
//	}
	else
	{
		SelectorTrue allDarts;
//		GLint t1 = glutGet(GLUT_ELAPSED_TIME);

Pierre Kraemer's avatar
Pierre Kraemer committed
459
460
		std::vector<std::string> attrNames ;
    	if(!Algo::Import::importMesh<PFP>(myMap, std::string(argv[1]), attrNames))
Pierre Kraemer's avatar
Pierre Kraemer committed
461
    	{
Pierre Kraemer's avatar
Pierre Kraemer committed
462
    		std::cerr << "could not import " << std::string(argv[1]) << std::endl ;
Pierre Kraemer's avatar
Pierre Kraemer committed
463
464
    		exit(1);
    	}
Pierre Kraemer's avatar
Pierre Kraemer committed
465
466
		position = myMap.getAttribute<PFP::VEC3>(VERTEX_ORBIT, attrNames[0]) ;

Pierre Kraemer's avatar
Pierre Kraemer committed
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
		GLint t1 = glutGet(GLUT_ELAPSED_TIME);

//		Algo::Export::exportCTM<PFP>(myMap, position, std::string("pipo.ctm"));

//        Algo::Modelisation::LoopSubdivision<PFP, PFP::TVEC3, PFP::VEC3>(myMap,position);
//        Algo::Modelisation::LoopSubdivision<PFP, PFP::TVEC3, PFP::VEC3>(myMap,position);
//        Algo::Modelisation::CatmullClark<PFP, PFP::TVEC3, PFP::VEC3>(myMap,position);
//        Algo::Modelisation::CatmullClark<PFP, PFP::TVEC3, PFP::VEC3>(myMap,position);


//		PFP::MAP::EVertex::setContainer(myMap.getAttributeContainer(VERTEX_ORBIT));
//		PFP::MAP::EVertex::setMap(myMap);
//		PFP::MAP::EVertex ec(0);
//		myMap.getAttributeContainer(VERTEX_ORBIT).toggleProcess(position);
//
//		Algo::Modelisation::LoopSubdivision<PFP, PFP::EVERTEX, PFP::EVERTEX>(myMap,ec);
//		Algo::Modelisation::LoopSubdivision<PFP, PFP::EVERTEX, PFP::EVERTEX>(myMap,ec);
//	    Algo::Modelisation::CatmullClark<PFP, PFP::EVERTEX, PFP::EVERTEX>(myMap,ec);
//	    Algo::Modelisation::CatmullClark<PFP, PFP::EVERTEX, PFP::EVERTEX>(myMap,ec);


		GLint t2 = glutGet(GLUT_ELAPSED_TIME);
		GLfloat seconds = (t2 - t1) / 1000.0f;
		std::cout << "subdiv: "<< seconds << "sec" << std::endl;


//        myMap.getAttributeContainer(VERTEX_ORBIT).toggleProcess(position);
//		PFP::MAP::EVertex::setContainer(myMap.getAttributeContainer(VERTEX_ORBIT));
//		PFP::MAP::EVertex::setMap(myMap);
//		PFP::MAP::EVertex ec(0);
//        Algo::Modelisation::triangleSubdivide<PFP, PFP::EVERTEX, PFP::EVERTEX>(myMap,ec);
//        Algo::Modelisation::triangleSubdivide<PFP, PFP::EVERTEX, PFP::EVERTEX>(myMap,ec);
//        Algo::Modelisation::triangleSubdivide<PFP, PFP::EVERTEX, PFP::EVERTEX>(myMap,ec);

        std::cout << "Nombre de sommets plonges  "<< myMap.getNbCells(VERTEX_ORBIT)<<std::endl;
        std::cout << "Nombre de sommets topo: "<< myMap.getNbOrbits(0)<<std::endl;
        std::cout << "Nombre de faces topo: "<< myMap.getNbOrbits(2)<<std::endl;


//		GLint t2 = glutGet(GLUT_ELAPSED_TIME);
//		GLfloat seconds = (t2 - t1) / 1000.0f;
//		std::cout << "import: "<< seconds << "sec" << std::endl;

	}

		float area = Algo::Geometry::totalArea<PFP>(myMap, position) ;
		std::cout << "total area = " << area << std::endl ;

		bool inter = Algo::Geometry::areTrianglesInIntersection<PFP>(myMap,0,10,position) ;
		std::cout << "intersection = " << inter << std::endl ;

		normal = myMap.addAttribute<Geom::Vec3f>(VERTEX_ORBIT, "normals");
//		PFP::NORMAL normal(normal,myMap);



//		Algo::Geometry::computeNormalVertices<PFP>(myMap, position, normal, allDarts) ;

//		AttributeHandler<Mark> tm(0,myMap);
//		for (Dart dd=myMap.begin(); dd!= myMap.end(); myMap.next(dd))
//		{
//			unsigned int a = myMap.getEmbedding(dd, 0);
//			std::cout << "dart:"<<dd.index<< " / ";
//			std::cout << "emb:"<<a<< " / ";
//			std::cout<<position[a]<< " / ";
//			std::cout << tm[a]<< std::endl;
//		}



        Geom::BoundingBox<PFP::VEC3> bb = Algo::Geometry::computeBoundingBox<PFP>(myMap,position);

        std::cout << "BB: "<< bb.min() << " / "<< bb.max() << std::endl;

       // compute width and position of object for centering

        myGlutWin mgw(&argc,argv,800,800);
        mgw.gPosObj = bb.center();

        float tailleX = bb.size(0);
        float tailleY = bb.size(1);
        float tailleZ = bb.size(2);

        mgw.gWidthObj = std::max<float>( std::max<float>(tailleX,tailleY),tailleZ);
        mgw.normalScaleFactor = std::min<float>( std::min<float>(tailleX,tailleY),tailleZ) / 50.0f;


        mgw.colClear = Geom::Vec4f(0.2f,0.2f,0.2f,0.1);
        mgw.colDif = Geom::Vec4f(0.8f,0.9f,0.7f,1.0f);
        mgw.colSpec = Geom::Vec4f(0.9f,0.9f,0.9f,1.0f);
        mgw.colNormal = Geom::Vec4f(1.0f,0.0f,0.0f,1.0f);
        mgw.shininess=80.0f;


        mgw.mainLoop();

        return 0;
}