/******************************************************************************* * CGoGN: Combinatorial and Geometric modeling with Generic N-dimensional Maps * * version 0.1 * * Copyright (C) 2009-2012, IGG Team, LSIIT, University of Strasbourg * * * * This library is free software; you can redistribute it and/or modify it * * under the terms of the GNU Lesser General Public License as published by the * * Free Software Foundation; either version 2.1 of the License, or (at your * * option) any later version. * * * * This library is distributed in the hope that it will be useful, but WITHOUT * * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License * * for more details. * * * * You should have received a copy of the GNU Lesser General Public License * * along with this library; if not, write to the Free Software Foundation, * * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * * * Web site: http://cgogn.unistra.fr/ * * Contact information: cgogn@unistra.fr * * * *******************************************************************************/ #include "Algo/Geometry/basic.h" #include "Algo/Geometry/area.h" #include "Topology/generic/traversor/traversorCell.h" #include "Topology/generic/traversor/traversor2.h" #include namespace CGoGN { namespace Algo { namespace Surface { namespace Geometry { template typename V_ATT::DATA_TYPE triangleNormal(typename PFP::MAP& map, Face f, const V_ATT& position) { CHECK_ATTRIBUTEHANDLER_ORBIT(V_ATT, VERTEX); typename V_ATT::DATA_TYPE N = Geom::triangleNormal( position[f.dart], position[map.phi1(f)], position[map.phi_1(f)] ) ; N.normalize() ; return N ; } template typename V_ATT::DATA_TYPE newellNormal(typename PFP::MAP& map, Face f, const V_ATT& position) { CHECK_ATTRIBUTEHANDLER_ORBIT(V_ATT, VERTEX); typedef typename V_ATT::DATA_TYPE VEC3; VEC3 N(0); foreach_incident2(map, f, [&] (Vertex v) { const VEC3& P = position[v]; const VEC3& Q = position[map.phi1(v)]; N[0] += (P[1] - Q[1]) * (P[2] + Q[2]); N[1] += (P[2] - Q[2]) * (P[0] + Q[0]); N[2] += (P[0] - Q[0]) * (P[1] + Q[1]); }); N.normalize(); return N; } template typename V_ATT::DATA_TYPE faceNormal(typename PFP::MAP& map, Face f, const V_ATT& position) { CHECK_ATTRIBUTEHANDLER_ORBIT(V_ATT, VERTEX); if(map.faceDegree(f) == 3) return triangleNormal(map, f, position) ; else return newellNormal(map, f, position) ; } template typename V_ATT::DATA_TYPE vertexNormal(typename PFP::MAP& map, Vertex v, const V_ATT& position) { CHECK_ATTRIBUTEHANDLER_ORBIT(V_ATT, VERTEX); typedef typename V_ATT::DATA_TYPE VEC3 ; VEC3 N(0) ; foreach_incident2(map, v, [&] (Face f) { VEC3 n = faceNormal(map, f, position) ; if(!n.hasNan()) { VEC3 v1 = vectorOutOfDart(map, f.dart, position) ; VEC3 v2 = vectorOutOfDart(map, map.phi_1(f), position) ; typename VEC3::DATA_TYPE l = (v1.norm2() * v2.norm2()); if (l > (typename VEC3::DATA_TYPE(0.0)) ) { n *= convexFaceArea(map, f, position) / l ; N += n ; } } }); N.normalize() ; return N ; } template typename V_ATT::DATA_TYPE vertexBorderNormal(typename PFP::MAP& map, Vertex v, const V_ATT& position) { CHECK_ATTRIBUTEHANDLER_ORBIT(V_ATT, VERTEX); assert(map.dimension() == 3); typedef typename V_ATT::DATA_TYPE VEC3 ; VEC3 N(0) ; std::vector faces; faces.reserve(16); map.foreach_dart_of_vertex(v, [&] (Dart d) { faces.push_back(d); }); CellMarker f(map); for(std::vector::iterator it = faces.begin() ; it != faces.end() ; ++it) { if(!f.isMarked(*it) && map.isBoundaryIncidentFace(*it)) { f.mark(*it); VEC3 n = faceNormal(map, *it, position); if(!n.hasNan()) { VEC3 v1 = vectorOutOfDart(map, *it, position); VEC3 v2 = vectorOutOfDart(map, map.phi_1(*it), position); n *= convexFaceArea(map, *it, position) / (v1.norm2() * v2.norm2()); N += n ; } } } N.normalize() ; return N ; } template void computeNormalFaces(typename PFP::MAP& map, const V_ATT& position, F_ATT& face_normal, unsigned int thread) { CHECK_ATTRIBUTEHANDLER_ORBIT(V_ATT, VERTEX); CHECK_ATTRIBUTEHANDLER_ORBIT(F_ATT, FACE); if ((CGoGN::Parallel::NumberOfThreads > 1) && (thread == 0)) { Parallel::computeNormalFaces(map, position, face_normal); return; } foreach_cell(map, [&] (Face f) { face_normal[f] = faceNormal(map, f, position) ; }, AUTO, thread); } template void computeNormalVertices(typename PFP::MAP& map, const V_ATT& position, V_ATT& normal, unsigned int thread) { CHECK_ATTRIBUTEHANDLER_ORBIT(V_ATT, VERTEX); if ((CGoGN::Parallel::NumberOfThreads > 1) && (thread == 0)) { Parallel::computeNormalVertices(map, position, normal); return; } foreach_cell(map, [&] (Vertex v) { normal[v] = vertexNormal(map, v, position) ; }, FORCE_CELL_MARKING, thread); } template typename PFP::REAL computeAngleBetweenNormalsOnEdge(typename PFP::MAP& map, Edge e, const V_ATT& position) { CHECK_ATTRIBUTEHANDLER_ORBIT(V_ATT, VERTEX); typedef typename V_ATT::DATA_TYPE VEC3 ; if(map.isBoundaryEdge(e)) return 0 ; Vertex v1(e.dart); Vertex v2 = map.phi2(e) ; const VEC3 n1 = faceNormal(map, Face(v1), position) ; const VEC3 n2 = faceNormal(map, Face(v2), position) ; VEC3 edge = position[v2] - position[v1] ; edge.normalize() ; typename PFP::REAL s = edge * (n1 ^ n2) ; typename PFP::REAL c = n1 * n2 ; typename PFP::REAL a(0) ; // the following trick is useful for avoiding NaNs (due to floating point errors) if (c > 0.5) a = asin(s) ; else { if(c < -1) c = -1 ; if (s >= 0) a = acos(c) ; else a = -acos(c) ; } // if (isnan(a)) if(a != a) std::cerr<< "Warning : computeAngleBetweenNormalsOnEdge returns NaN on edge " << v1 << "-" << v2 << std::endl ; return a ; } template void computeAnglesBetweenNormalsOnEdges(typename PFP::MAP& map, const V_ATT& position, E_ATT& angles, unsigned int thread) { CHECK_ATTRIBUTEHANDLER_ORBIT(V_ATT, VERTEX); CHECK_ATTRIBUTEHANDLER_ORBIT(E_ATT, EDGE); if ((CGoGN::Parallel::NumberOfThreads > 1) && (thread == 0)) { Parallel::computeAnglesBetweenNormalsOnEdges(map, position, angles); return; } foreach_cell(map, [&] (Edge e) { angles[e] = computeAngleBetweenNormalsOnEdge(map, e, position) ; }, AUTO, thread); } namespace Parallel { template void computeNormalVertices(typename PFP::MAP& map, const V_ATT& position, V_ATT& normal) { CHECK_ATTRIBUTEHANDLER_ORBIT(V_ATT, VERTEX); CGoGN::Parallel::foreach_cell(map, [&] (Vertex v, unsigned int /*thr*/) { normal[v] = vertexNormal(map, v, position) ; }, FORCE_CELL_MARKING); } template void computeNormalFaces(typename PFP::MAP& map, const V_ATT& position, F_ATT& normal) { CHECK_ATTRIBUTEHANDLER_ORBIT(V_ATT, VERTEX); CHECK_ATTRIBUTEHANDLER_ORBIT(F_ATT, FACE); CGoGN::Parallel::foreach_cell(map, [&] (Face f, unsigned int /*thr*/) { normal[f] = faceNormal(map, f, position) ; }); } template void computeAnglesBetweenNormalsOnEdges(typename PFP::MAP& map, const V_ATT& position, E_ATT& angles) { CHECK_ATTRIBUTEHANDLER_ORBIT(V_ATT, VERTEX); CHECK_ATTRIBUTEHANDLER_ORBIT(E_ATT, EDGE); CGoGN::Parallel::foreach_cell(map,[&](Edge e, unsigned int /*thr*/) { angles[e] = computeAngleBetweenNormalsOnEdge(map, e, position) ; }); } } // namespace Parallel } // namespace Geometry } // namespace Surface } // namespace Algo } // namespace CGoGN