/******************************************************************************* * CGoGN: Combinatorial and Geometric modeling with Generic N-dimensional Maps * * version 0.1 * * Copyright (C) 2009-2011, IGG Team, LSIIT, University of Strasbourg * * * * This library is free software; you can redistribute it and/or modify it * * under the terms of the GNU Lesser General Public License as published by the * * Free Software Foundation; either version 2.1 of the License, or (at your * * option) any later version. * * * * This library is distributed in the hope that it will be useful, but WITHOUT * * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License * * for more details. * * * * You should have received a copy of the GNU Lesser General Public License * * along with this library; if not, write to the Free Software Foundation, * * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * * * Web site: http://cgogn.u-strasbg.fr/ * * Contact information: cgogn@unistra.fr * * * *******************************************************************************/ #include "Algo/Geometry/basic.h" #include "Algo/Geometry/area.h" #include "Topology/generic/traversor2.h" #include namespace CGoGN { namespace Algo { namespace Geometry { template typename PFP::VEC3 triangleNormal(typename PFP::MAP& map, Dart d, const typename PFP::TVEC3& position) { typedef typename PFP::VEC3 VEC3 ; const VEC3& p1 = position[d]; const VEC3& p2 = position[map.phi1(d)]; const VEC3& p3 = position[map.phi_1(d)]; VEC3 N = Geom::triangleNormal(p1, p2, p3) ; N.normalize() ; return N ; } template typename PFP::VEC3 newellNormal(typename PFP::MAP& map, Dart d, const typename PFP::TVEC3& position) { Dart it = d; typename PFP::VEC3 N(0); Traversor2FV t(map, d) ; do { const typename PFP::VEC3& P = position[it]; it = map.phi1(it); const typename PFP::VEC3& Q = position[it]; N[0] += (P[1] - Q[1]) * (P[2] + Q[2]); N[1] += (P[2] - Q[2]) * (P[0] + Q[0]); N[2] += (P[0] - Q[0]) * (P[1] + Q[1]); } while (it != d); N.normalize(); return N; } template typename PFP::VEC3 faceNormal(typename PFP::MAP& map, Dart d, const typename PFP::TVEC3& position) { typedef typename PFP::VEC3 VEC3 ; if(map.isFaceTriangle(d)) return triangleNormal(map, d, position) ; else { VEC3 N(0) ; Dart it = d ; do { VEC3 n = triangleNormal(map, it, position) ; //if(!std::isnan(n[0]) && !std::isnan(n[1]) && !std::isnan(n[2])) if(!n.hasNan()) N += n ; it = map.phi1(it) ; } while (it != d) ; N.normalize() ; return N ; } } template typename PFP::VEC3 vertexNormal(typename PFP::MAP& map, Dart d, const typename PFP::TVEC3& position) { typedef typename PFP::VEC3 VEC3 ; VEC3 N(0) ; Dart it = d ; do { VEC3 n = faceNormal(map, it, position) ; if(!n.hasNan()) { VEC3 v1 = vectorOutOfDart(map, it, position) ; VEC3 v2 = vectorOutOfDart(map, map.phi_1(it), position) ; n *= convexFaceArea(map, it, position) / (v1.norm2() * v2.norm2()) ; N += n ; } it = map.phi1(map.phi2(it)) ; } while (it != d) ; N.normalize() ; return N ; } template void computeNormalFaces(typename PFP::MAP& map, const typename PFP::TVEC3& position, typename PFP::TVEC3& face_normal, const FunctorSelect& select, unsigned int thread) { CellMarker marker(map, FACE,thread); for(Dart d = map.begin(); d != map.end(); map.next(d)) { if(select(d) && !marker.isMarked(d)) { marker.mark(d); face_normal[d] = faceNormal(map, d, position) ; } } } template void computeNormalVertices(typename PFP::MAP& map, const typename PFP::TVEC3& position, typename PFP::TVEC3& normal, const FunctorSelect& select, unsigned int thread) { CellMarker marker(map, VERTEX, thread); for(Dart d = map.begin(); d != map.end(); map.next(d)) { if(select(d) && !marker.isMarked(d)) { marker.mark(d); normal[d] = vertexNormal(map, d, position) ; } } } template typename PFP::REAL computeAngleBetweenNormalsOnEdge(typename PFP::MAP& map, Dart d, typename PFP::TVEC3& position) { typedef typename PFP::VEC3 VEC3 ; Dart dd = map.phi2(d) ; if(dd == d) return 0 ; const VEC3 n1 = faceNormal(map, d, position) ; const VEC3 n2 = faceNormal(map, dd, position) ; VEC3 e = position[dd] - position[d] ; e.normalize() ; typename PFP::REAL s = e * (n1 ^ n2) ; typename PFP::REAL c = n1 * n2 ; typename PFP::REAL a(0) ; // the following trick is useful for avoiding NaNs (due to floating point errors) if (c > 0.5) a = asin(s) ; else { if(c < -1) c = -1 ; if (s >= 0) a = acos(c) ; else a = -acos(c) ; } // if (isnan(a)) if(a != a) std::cerr<< "Warning : computeAngleBetweenNormalsOnEdge returns NaN on edge " << d << "-" << dd << std::endl ; return a ; } template void computeAnglesBetweenNormalsOnEdges(typename PFP::MAP& map, typename PFP::TVEC3& position, typename PFP::TREAL& angles, const FunctorSelect& select, unsigned int thread) { CellMarker me(map, EDGE, thread) ; for(Dart d = map.begin(); d != map.end(); map.next(d)) { if(select(d) && !me.isMarked(d)) { me.mark(d) ; angles[d] = computeAngleBetweenNormalsOnEdge(map, d, position) ; } } } } // namespace Geometry } // namespace Algo } // namespace CGoGN