average_normals.h 15.8 KB
Newer Older
Pierre Kraemer's avatar
Pierre Kraemer committed
1
2
3
/*******************************************************************************
* CGoGN: Combinatorial and Geometric modeling with Generic N-dimensional Maps  *
* version 0.1                                                                  *
4
* Copyright (C) 2009-2011, IGG Team, LSIIT, University of Strasbourg           *
Pierre Kraemer's avatar
Pierre Kraemer committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
*                                                                              *
* This library is free software; you can redistribute it and/or modify it      *
* under the terms of the GNU Lesser General Public License as published by the *
* Free Software Foundation; either version 2.1 of the License, or (at your     *
* option) any later version.                                                   *
*                                                                              *
* This library is distributed in the hope that it will be useful, but WITHOUT  *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or        *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License  *
* for more details.                                                            *
*                                                                              *
* You should have received a copy of the GNU Lesser General Public License     *
* along with this library; if not, write to the Free Software Foundation,      *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301 USA.           *
*                                                                              *
20
* Web site: http://cgogn.u-strasbg.fr/                                         *
Pierre Kraemer's avatar
Pierre Kraemer committed
21
22
23
24
25
26
27
28
29
30
31
32
* Contact information: cgogn@unistra.fr                                        *
*                                                                              *
*******************************************************************************/

#include "Topology/generic/autoAttributeHandler.h"

namespace CGoGN
{

namespace Algo
{

Pierre Kraemer's avatar
Pierre Kraemer committed
33
namespace Filtering
Pierre Kraemer's avatar
Pierre Kraemer committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
{

/**
 * compute new position of vertices from normals (normalAverage & MMSE filters)
 * @param map the map
 */
template <typename PFP>
void computeNewPositionsFromFaceNormals(
	typename PFP::MAP& map,
	const typename PFP::TVEC3& position,
	typename PFP::TVEC3& position2,
	const typename PFP::TREAL& faceArea,
	const typename PFP::TVEC3& faceCentroid,
	const typename PFP::TVEC3& faceNormal,
	const typename PFP::TVEC3& faceNewNormal,
	const FunctorSelect& select)
{
	typedef typename PFP::VEC3 VEC3 ;
	typedef typename PFP::REAL REAL ;

54
	CellMarker markV(map, VERTEX);
Pierre Kraemer's avatar
Pierre Kraemer committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
	for (Dart d = map.begin(); d != map.end(); map.next(d))
	{
		if(select(d) && !markV.isMarked(d))
		{
			markV.mark(d);

			// get pos of vertex
			const VEC3& pos_d = position[d] ;

			// traversal of vertices neighbourhood
			VEC3 displ(0) ;
			REAL sumAreas = 0 ;
			Dart dd = d ;
			do
			{
				sumAreas += faceArea[dd] ;
				VEC3 vT = faceCentroid[dd] - pos_d ;
Pierre Kraemer's avatar
Pierre Kraemer committed
72
				vT = (vT * faceNewNormal[dd]) * faceNormal[dd] ;
Pierre Kraemer's avatar
Pierre Kraemer committed
73
74
75
76
77
78
79
80
81
82
83
				displ += faceArea[dd] * vT ;
				dd = map.phi1(map.phi2(dd)) ;
			} while(dd != d) ;
			displ /= sumAreas ;
			position2[d] = pos_d + displ ;
		}
	}
}


template <typename PFP>
Pierre Kraemer's avatar
Pierre Kraemer committed
84
void filterAverageNormals(typename PFP::MAP& map, const typename PFP::TVEC3& position, typename PFP::TVEC3& position2, const FunctorSelect& select = SelectorTrue())
Pierre Kraemer's avatar
Pierre Kraemer committed
85
86
87
88
{
	typedef typename PFP::VEC3 VEC3 ;
	typedef typename PFP::REAL REAL ;

89
90
91
	AutoAttributeHandler<REAL> faceArea(map, FACE, "faceArea") ;
	AutoAttributeHandler<VEC3> faceNormal(map, FACE, "faceNormal") ;
	AutoAttributeHandler<VEC3> faceCentroid(map, FACE, "faceCentroid") ;
Pierre Kraemer's avatar
Pierre Kraemer committed
92
93
94
95
96

	Algo::Geometry::computeAreaFaces<PFP>(map, position, faceArea, select) ;
	Algo::Geometry::computeNormalFaces<PFP>(map, position, faceNormal, select) ;
	Algo::Geometry::computeCentroidFaces<PFP>(map, position, faceCentroid, select) ;

97
	AutoAttributeHandler<VEC3> faceNewNormal(map, FACE, "faceNewNormal") ;
Pierre Kraemer's avatar
Pierre Kraemer committed
98
99

	// Compute new normals
100
	CellMarker markF(map, FACE);
Pierre Kraemer's avatar
Pierre Kraemer committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
	for(Dart d = map.begin(); d != map.end(); map.next(d))
	{
		if(select(d) && !markF.isMarked(d))
		{
			markF.mark(d);

			REAL sumArea = 0 ;
			VEC3 meanFilter(0) ;

			// traversal of adjacent faces (by edges and vertices)
			Dart d_n = map.phi1(d) ; // next dart in the face
			Dart d_f = map.phi1(map.phi2(d_n)) ; // test dart for end of vertex turning

			Dart e = map.phi2(d) ; // current dart for the traversal
			Dart d_last = e ;
			do
			{
				// get info from face embedding and sum
				sumArea += faceArea[e] ;
				meanFilter += faceArea[e] * faceNormal[e] ;
				e = map.phi_1(e) ;
				e = map.phi2(e) ;

				if(e == d_f)
				{
					e = map.phi2(d_n) ;
					d_n = map.phi1(d_n) ;
					d_f = map.phi1(map.phi2(d_n)) ;
				}
			} while(e != d_last) ;

			// finalize the computation of meanFilter normal
			meanFilter /= sumArea ;
			meanFilter.normalize() ;
			// and store it
			faceNewNormal[d] = meanFilter ;
		}
	}

	// Compute new vertices position
	computeNewPositionsFromFaceNormals<PFP>(
		map, position, position2, faceArea, faceCentroid, faceNormal, faceNewNormal, select
	) ;
}

template <typename PFP>
Pierre Kraemer's avatar
Pierre Kraemer committed
147
void filterMMSE(typename PFP::MAP& map, float sigmaN2, const typename PFP::TVEC3& position, typename PFP::TVEC3& position2, const FunctorSelect& select = SelectorTrue())
Pierre Kraemer's avatar
Pierre Kraemer committed
148
149
150
151
{
	typedef typename PFP::VEC3 VEC3 ;
	typedef typename PFP::REAL REAL ;

152
153
154
	AutoAttributeHandler<REAL> faceArea(map, FACE, "faceArea") ;
	AutoAttributeHandler<VEC3> faceNormal(map, FACE, "faceNormal") ;
	AutoAttributeHandler<VEC3> faceCentroid(map, FACE, "faceCentroid") ;
Pierre Kraemer's avatar
Pierre Kraemer committed
155
156
157
158
159

	Algo::Geometry::computeAreaFaces<PFP>(map, position, faceArea, select) ;
	Algo::Geometry::computeNormalFaces<PFP>(map, position, faceNormal, select) ;
	Algo::Geometry::computeCentroidFaces<PFP>(map, position, faceCentroid, select) ;

160
	AutoAttributeHandler<VEC3> faceNewNormal(map, FACE, "faceNewNormal") ;
Pierre Kraemer's avatar
Pierre Kraemer committed
161
162

	// Compute new normals
163
	CellMarker markF(map,FACE);
Pierre Kraemer's avatar
Pierre Kraemer committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
	for(Dart d = map.begin(); d != map.end(); map.next(d))
	{
		if( select(d) && !markF.isMarked(d))
		{
			markF.mark(d);

			// traversal of neighbour vertices
			REAL sumArea = 0 ;
			REAL sigmaX2 = 0 ;
			REAL sigmaY2 = 0 ;
			REAL sigmaZ2 = 0 ;

			VEC3 meanFilter(0) ;

			// traversal of adjacent faces (by edges and vertices)
			Dart d_n = map.phi1(d) ; // next dart in the face
			Dart d_f = map.phi1(map.phi2(d_n)) ; // test dart for end of vertex turning

			Dart e = map.phi2(d) ; // current dart for the traversal
			Dart d_last = e ;
			do
			{
				// get info from face embedding and sum
				REAL area = faceArea[e] ;
				sumArea += area ;
				VEC3 normal = faceNormal[e] ;
				meanFilter += area * normal ;
				sigmaX2 += area * normal[0] * normal[0] ;
				sigmaY2 += area * normal[1] * normal[1] ;
				sigmaZ2 += area * normal[2] * normal[2] ;
				e = map.phi_1(e) ;
				e = map.phi2(e) ;

				if(e == d_f)
				{
					e = map.phi2(d_n) ;
					d_n = map.phi1(d_n) ;
					d_f = map.phi1(map.phi2(d_n)) ;
				}
			} while(e != d_last) ;

			meanFilter /= sumArea ;
			sigmaX2 /= sumArea ;
			sigmaX2 -= meanFilter[0] * meanFilter[0] ;
			sigmaY2 /= sumArea ;
			sigmaY2 -= meanFilter[1] * meanFilter[1] ;
			sigmaZ2 /= sumArea ;
			sigmaZ2 -= meanFilter[2] * meanFilter[2] ;

			VEC3& oldNormal = faceNormal[d] ;
			VEC3 newNormal ;

			if(sigmaX2 < sigmaN2)
				newNormal[0] = meanFilter[0] ;
			else
			{
				newNormal[0] = (1 - (sigmaN2 / sigmaX2)) * oldNormal[0] ;
				newNormal[0] += (sigmaN2 / sigmaX2) * meanFilter[0] ;
			}
			if(sigmaY2 < sigmaN2)
				newNormal[1] = meanFilter[1] ;
			else
			{
				newNormal[1] = (1 - (sigmaN2 / sigmaY2)) * oldNormal[1] ;
				newNormal[1] += (sigmaN2 / sigmaY2) * meanFilter[1] ;
			}
			if(sigmaZ2 < sigmaN2)
				newNormal[2] = meanFilter[2] ;
			else
			{
				newNormal[2] = (1 - (sigmaN2 / sigmaZ2)) * oldNormal[2] ;
				newNormal[2] += (sigmaN2 / sigmaZ2) * meanFilter[2] ;
			}

			newNormal.normalize() ;
			faceNewNormal[d] = newNormal ;
		}
	}

	// Compute new vertices position
	computeNewPositionsFromFaceNormals<PFP>(
		map, position, position2, faceArea, faceCentroid, faceNormal, faceNewNormal, select
	) ;
}

template <typename PFP>
Pierre Kraemer's avatar
Pierre Kraemer committed
250
void filterTNBA(typename PFP::MAP& map, float sigmaN2, float SUSANthreshold, const typename PFP::TVEC3& position, typename PFP::TVEC3& position2, const FunctorSelect& select = SelectorTrue())
Pierre Kraemer's avatar
Pierre Kraemer committed
251
252
253
254
{
	typedef typename PFP::VEC3 VEC3 ;
	typedef typename PFP::REAL REAL ;

255
256
257
	AutoAttributeHandler<REAL> faceArea(map, FACE, "faceArea") ;
	AutoAttributeHandler<VEC3> faceNormal(map, FACE, "faceNormal") ;
	AutoAttributeHandler<VEC3> faceCentroid(map, FACE, "faceCentroid") ;
Pierre Kraemer's avatar
Pierre Kraemer committed
258
259
260
261
262

	Algo::Geometry::computeAreaFaces<PFP>(map, position, faceArea, select) ;
	Algo::Geometry::computeNormalFaces<PFP>(map, position, faceNormal, select) ;
	Algo::Geometry::computeCentroidFaces<PFP>(map, position, faceCentroid, select) ;

263
	AutoAttributeHandler<VEC3> faceNewNormal(map, FACE, "faceNewNormal") ;
Pierre Kraemer's avatar
Pierre Kraemer committed
264
265
266
267
268
269

	// Compute new normals
	long nbTot = 0 ;
	long nbAdapt = 0 ;
	long nbSusan = 0 ;

270
	CellMarker markF(map, FACE);
Pierre Kraemer's avatar
Pierre Kraemer committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
	for(Dart d = map.begin(); d != map.end(); map.next(d))
	{
		if( select(d) && !markF.isMarked(d))
		{
			markF.mark(d);

			const VEC3& normF = faceNormal[d] ;

			// traversal of neighbour vertices
			REAL sumArea = 0 ;
			REAL sigmaX2 = 0 ;
			REAL sigmaY2 = 0 ;
			REAL sigmaZ2 = 0 ;

			VEC3 meanFilter(0) ;
			bool SUSANregion = false ;

			// traversal of adjacent faces (by edges and vertices)
			Dart d_n = map.phi1(d) ; // next dart in the face
			Dart d_f = map.phi1(map.phi2(d_n)) ; // test dart for end of vertex turning

			Dart e = map.phi2(d) ; // current dart for the traversal
			Dart d_last = e ;
			do
			{
				// get info from face embedding and sum
				const VEC3& normal = faceNormal[e] ;

				float angle = Geom::angle(normF, normal) ;
				if(angle <= SUSANthreshold)
				{
					REAL area = faceArea[e] ;
					sumArea += area ;
					meanFilter += area * normal ;
					sigmaX2 += area * normal[0] * normal[0] ;
					sigmaY2 += area * normal[1] * normal[1] ;
					sigmaZ2 += area * normal[2] * normal[2] ;
				}
				else SUSANregion = true ;

				e = map.phi_1(e) ;
				e = map.phi2(e) ;

				if(e == d_f)
				{
					e = map.phi2(d_n) ;
					d_n = map.phi1(d_n) ;
					d_f = map.phi1(map.phi2(d_n)) ;
				}

			} while(e != d_last) ;

			if(SUSANregion)
				++nbSusan ;

			++nbTot ;

			if(sumArea > 0.0f)
			{
				meanFilter /= sumArea ;
				sigmaX2 /= sumArea ;
				sigmaX2 -= meanFilter[0] * meanFilter[0] ;
				sigmaY2 /= sumArea ;
				sigmaY2 -= meanFilter[1] * meanFilter[1] ;
				sigmaZ2 /= sumArea ;
				sigmaZ2 -= meanFilter[2] * meanFilter[2] ;

				VEC3& oldNormal = faceNormal[d] ;
				VEC3 newNormal ;

				bool adapt = false ;
				if(sigmaX2 < sigmaN2)
					newNormal[0] = meanFilter[0] ;
				else
				{
					adapt = true ;
					newNormal[0] = (1 - (sigmaN2 / sigmaX2)) * oldNormal[0] ;
					newNormal[0] += (sigmaN2 / sigmaX2) * meanFilter[0] ;
				}
				if(sigmaY2 < sigmaN2)
					newNormal[1] = meanFilter[1] ;
				else
				{
					adapt = true ;
					newNormal[1] = (1 - (sigmaN2 / sigmaY2)) * oldNormal[1] ;
					newNormal[1] += (sigmaN2 / sigmaY2) * meanFilter[1] ;
				}
				if(sigmaZ2 < sigmaN2)
					newNormal[2] = meanFilter[2] ;
				else
				{
					adapt = true ;
					newNormal[2] = (1 - (sigmaN2 / sigmaZ2)) * oldNormal[2] ;
					newNormal[2] += (sigmaN2 / sigmaZ2) * meanFilter[2] ;
				}
				if(adapt)
					++nbAdapt ;

				newNormal.normalize() ;
				faceNewNormal[d] = newNormal;
			}
			else
			{
				faceNewNormal[d] = normF ;
			}
		}
	}

	// Compute new vertices position
	computeNewPositionsFromFaceNormals<PFP>(
		map, position, position2, faceArea, faceCentroid, faceNormal, faceNewNormal, select
	) ;

384
385
//	CGoGNout <<" susan rate = "<< float(nbSusan)/float(nbTot)<<CGoGNendl;
//	CGoGNout <<" adaptive rate = "<< float(nbAdapt)/float(nbTot)<<CGoGNendl;
Pierre Kraemer's avatar
Pierre Kraemer committed
386
387
388
}

template <typename PFP>
Pierre Kraemer's avatar
Pierre Kraemer committed
389
void filterVNBA(typename PFP::MAP& map, float sigmaN2, float SUSANthreshold, const typename PFP::TVEC3& position, typename PFP::TVEC3& position2, const typename PFP::TVEC3& normal, const FunctorSelect& select = SelectorTrue())
Pierre Kraemer's avatar
Pierre Kraemer committed
390
391
392
393
{
	typedef typename PFP::VEC3 VEC3 ;
	typedef typename PFP::REAL REAL ;

394
395
396
	AutoAttributeHandler<REAL> faceArea(map, FACE, "faceArea") ;
	AutoAttributeHandler<VEC3> faceNormal(map, FACE, "faceNormal") ;
	AutoAttributeHandler<VEC3> faceCentroid(map, FACE, "faceCentroid") ;
Pierre Kraemer's avatar
Pierre Kraemer committed
397
398
399
400
401

	Algo::Geometry::computeAreaFaces<PFP>(map, position, faceArea, select) ;
	Algo::Geometry::computeNormalFaces<PFP>(map, position, faceNormal, select) ;
	Algo::Geometry::computeCentroidFaces<PFP>(map, position, faceCentroid, select) ;

402
403
404
	AutoAttributeHandler<REAL> vertexArea(map, VERTEX, "vertexArea") ;
	AutoAttributeHandler<VEC3> faceNewNormal(map, FACE, "faceNewNormal") ;
	AutoAttributeHandler<VEC3> vertexNewNormal(map, VERTEX, "vertexNewNormal") ;
Pierre Kraemer's avatar
Pierre Kraemer committed
405
406
407
408
409

	long nbTot = 0 ;
	long nbAdapt = 0 ;
	long nbSusan = 0 ;

410
	CellMarker markV(map, VERTEX);
Pierre Kraemer's avatar
Pierre Kraemer committed
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
	for(Dart d = map.begin(); d != map.end(); map.next(d))
	{
		if( select(d) && !markV.isMarked(d))
		{
			markV.mark(d) ;

			const VEC3& normV = normal[d] ;

			// traversal of neighbour vertices
			REAL sumArea = 0 ;
			REAL sigmaX2 = 0 ;
			REAL sigmaY2 = 0 ;
			REAL sigmaZ2 = 0 ;

			VEC3 meanFilter(0) ;

			bool SUSANregion = false ;

			Dart dd = d ;
			do
			{
				Dart e = map.phi2(dd) ;
				const VEC3& neighborNormal = normal[e] ;

				float angle = Geom::angle(normV, neighborNormal) ;
				if( angle <= SUSANthreshold )
				{
					REAL umbArea = 0 ;
			        Dart ee = e ;
			        do
			        {
			        	umbArea += faceArea[ee] ;
			        	ee = map.phi1(map.phi2(ee)) ;
			        } while(ee!=e) ;
			        vertexArea[e] = umbArea ;

			        sumArea += umbArea ;
					sigmaX2 += umbArea * neighborNormal[0] * neighborNormal[0] ;
					sigmaY2 += umbArea * neighborNormal[1] * neighborNormal[1] ;
					sigmaZ2 += umbArea * neighborNormal[2] * neighborNormal[2] ;
					meanFilter += neighborNormal * umbArea ;
				}
				else SUSANregion = true ;

				dd = map.phi1(e) ;
			} while(dd != d) ;

			if(SUSANregion)
				++nbSusan ;

			++nbTot ;

			if(sumArea > 0.0f)
			{
				meanFilter /= sumArea ;
				sigmaX2 /= sumArea ;
				sigmaX2 -= meanFilter[0] * meanFilter[0] ;
				sigmaY2 /= sumArea ;
				sigmaY2 -= meanFilter[1] * meanFilter[1] ;
				sigmaZ2 /= sumArea ;
				sigmaZ2 -= meanFilter[2] * meanFilter[2] ;

				VEC3 newNormal ;
				bool adapt = false ;
				if(sigmaX2 < sigmaN2)
					newNormal[0] = meanFilter[0] ;
				else
				{
					adapt = true ;
					newNormal[0] = (1 - (sigmaN2 / sigmaX2)) * normV[0] ;
					newNormal[0] += (sigmaN2 / sigmaX2) * meanFilter[0] ;
				}
				if(sigmaY2 < sigmaN2)
					newNormal[1] = meanFilter[1] ;
				else
				{
					adapt = true ;
					newNormal[1] = (1 - (sigmaN2 / sigmaY2)) * normV[1] ;
					newNormal[1] += (sigmaN2 / sigmaY2) * meanFilter[1] ;
				}
				if(sigmaZ2 < sigmaN2)
					newNormal[2] = meanFilter[2] ;
				else
				{
					adapt = true ;
					newNormal[2] = (1 - (sigmaN2 / sigmaZ2)) * normV[2] ;
					newNormal[2] += (sigmaN2 / sigmaZ2) * meanFilter[2] ;
				}

				if(adapt)
					++nbAdapt ;

				newNormal.normalize() ;
				vertexNewNormal[d] = newNormal ;
			}
			else
			{
				vertexNewNormal[d] = normV ;
			}
		}
	}

	// Compute face normals from vertex normals
514
	CellMarker markF(map,FACE);
Pierre Kraemer's avatar
Pierre Kraemer committed
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
	for(Dart d = map.begin(); d != map.end(); map.next(d))
	{
		if (select(d) && !markF.isMarked(d))
		{
			markF.mark(d);
            VEC3 newNormal(0) ;
            REAL totArea = 0 ;
            Dart dd = d ;
            do
            {
            	VEC3 vNorm = vertexNewNormal[dd] ;
            	REAL area = vertexArea[dd] ;
            	totArea += area ;
            	vNorm *= area ;
            	newNormal += vNorm ;
            	dd = map.phi1(dd) ;
            } while(dd != d) ;
            newNormal.normalize() ;
            faceNewNormal[d] = newNormal ;
		}
	}

	// Compute new vertices position
	computeNewPositionsFromFaceNormals<PFP>(
		map, position, position2, faceArea, faceCentroid, faceNormal, faceNewNormal, select
	) ;

542
543
//	CGoGNout <<" susan rate = "<< float(nbSusan)/float(nbTot)<<CGoGNendl;
//	CGoGNout <<" adaptive rate = "<< float(nbAdapt)/float(nbTot)<<CGoGNendl;
Pierre Kraemer's avatar
Pierre Kraemer committed
544
545
}

Pierre Kraemer's avatar
Pierre Kraemer committed
546
} //namespace Filtering
Pierre Kraemer's avatar
Pierre Kraemer committed
547
548
549
550

} //namespace Algo

} //namespace CGoGN