tutoriel.cpp 17.8 KB
Newer Older
1 2 3
/*******************************************************************************
* CGoGN: Combinatorial and Geometric modeling with Generic N-dimensional Maps  *
* version 0.1                                                                  *
4
* Copyright (C) 2009-2012, IGG Team, LSIIT, University of Strasbourg           *
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
*                                                                              *
* This library is free software; you can redistribute it and/or modify it      *
* under the terms of the GNU Lesser General Public License as published by the *
* Free Software Foundation; either version 2.1 of the License, or (at your     *
* option) any later version.                                                   *
*                                                                              *
* This library is distributed in the hope that it will be useful, but WITHOUT  *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or        *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License  *
* for more details.                                                            *
*                                                                              *
* You should have received a copy of the GNU Lesser General Public License     *
* along with this library; if not, write to the Free Software Foundation,      *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301 USA.           *
*                                                                              *
20
* Web site: http://cgogn.unistra.fr/                                           *
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
* Contact information: cgogn@unistra.fr                                        *
*                                                                              *
*******************************************************************************/

#include "tutoriel.h"

#include "Topology/generic/parameters.h"
#include "Topology/map/embeddedMap2.h"

#include "Geometry/vector_gen.h"
#include "Geometry/matrix.h"

#include "Algo/Render/GL2/mapRender.h"
#include "Algo/Render/GL2/topoRender.h"
#include "Algo/Geometry/normal.h"

#include "Algo/Selection/raySelector.h"

#include "Algo/Import/import.h"
#include "Algo/Geometry/boundingbox.h"

#include "Utils/Shaders/shaderSimpleColor.h"
#include "Utils/Shaders/shaderPhong.h"

#include "Utils/drawer.h"

// pour simplifier l'ecriture du code
using namespace CGoGN;

// déclaration de la classe utilisée pour le TP
class Map2TP;

// definition de la structure qui decrit le type de carte utilise
struct PFP: public PFP_STANDARD
{
	// definition of the map
	typedef Map2TP MAP;
};

// fonction qui renvoit vrai (pour sélectioner tous les brins)
SelectorTrue allDarts;

// typedef pour le plongement des sommets
typedef PFP::VEC3 Point3D;

// Variables pour la gestion des plongements
//		handler d'attribut de position par sommet
AttributeHandler<Point3D> position;
//		handler d'attribut de normale par sommet
AttributeHandler<PFP::VEC3> normal;


/// Fonctions a connaitre:
///
/// phi1(d), phi2(d) : les parcours topologiques
///
/// Creer un face: newOrientedFace(nb_cotes); renvoit un Dart
///
/// Creer un plongement de sommet :
/// 	Point3D P = Point3D(0.0f,0.0f,0.0f);
///
/// Lire le plongement d'un sommet (celui du brin d)
///		P = position[d];
///
/// Assigner un plongement à un sommet (celui du brin d)
///		embedVertex(d,P);

class Map2TP : public Map2
{
private:
	// 3 brins de la carte
	Dart d_carre;
	Dart d_tri;
	Dart d_multiFaces;

	// Assigne un nouveau plongement au sommet. Les anciens plongements sont libérés.
	void newVertex(Dart d) {
		embedNewCell(VERTEX,d);
	}

public:
	//  Fonction Carre: construit un carre et renvoit un brin
	Dart Carre()
	{
		Point3D P[4];
		P[0] = Point3D(0.0f,0.0f,0.0f);
		P[1] = Point3D(1.0f,0.0f,0.0f);
		P[2] = Point3D(1.0f,1.0f,0.0f);
		P[3] = Point3D(0.0f,1.0f,0.0f);

		Dart d0 = newOrientedFace(4);
		position[d0] = P[0];

		Dart d1 = phi1(d0);
		position[d1] = P[1];

		Dart d2 = phi1(d1);
		position[d2] = P[2];

		Dart d3 = phi1(d2);
		position[d3] = P[3];

		return d0;
	}

	//  Fonction Triangle: construit un triangle et renvoit un brin
	Dart Triangle()
	{
		Point3D P[3];
		P[0] = Point3D(0.0f,1.1f,0.0f);
		P[1] = Point3D(1.0f,1.1f,0.0f);
		P[2] = Point3D(0.5f,2.0f,0.0f);

		Dart d0 = newOrientedFace(3);
		position[d0] = P[0];

		Dart d1 = phi1(d0);
		position[d1] = P[1];

		Dart d2 = phi1(d1);
		position[d2] = P[2];

		return d0;
	}

	// Construit un polygone de taille "size"
	Dart Polygone(Point3D* P, unsigned size)
	{
		Dart d = newOrientedFace(size);

		for (unsigned i=0; i<size; i++) {
			position[d] = P[i];
			d = phi1(d);
		}
		return d;
	}

	// appel clavier touche 'c'
	void Colle(Dart d, Dart e)
	{
		Point3D p = position[d];
		Point3D q = position[phi1(d)];
		phi2sew(d,e);
		newVertex(d);
		position[d] = p;
		newVertex(e);
		position[e] = q;
	}

	// appel clavier touche 'm'
	void ColleMilieu(Dart d, Dart e)
	{
		Point3D p1 = position[d];
		Point3D p2 = position[phi1(d)];
		Point3D q1 = position[e];
		Point3D q2 = position[phi1(e)];
		Point3D m1 = (p1+q2)/2;
		Point3D m2 = (q1+p2)/2;;

		phi2sew(d,e);

		newVertex(d);
		position[d] = m1;
		newVertex(e);
		position[e] = m2;
	}

	// Construit une figure
	Dart MultiFaces()
	{
		Point3D P[6];
		P[0] = Point3D(2.0f,0.0f,0.0f);
		P[1] = Point3D(3.0f,0.0f,0.0f);
		P[2] = Point3D(3.5f,1.0f,0.0f);
		P[3] = Point3D(3.0f,1.8f,0.0f);
		P[4] = Point3D(2.0f,1.8f,0.0f);
		P[5] = Point3D(1.5f,1.0f,0.0f);
		Dart hexa = Polygone(P,6);

		Point3D Q[3];
		Q[0] = Point3D(2.0f,2.0f,0.0f);
		Q[1] = Point3D(3.0f,2.0f,0.0f);
		Q[2] = Point3D(2.5f,3.0f,0.0f);
		Dart triangle = Polygone(Q,3);

		Point3D R[4];
		R[0] = Point3D(4.0f,0.0f,0.0f);
		R[1] = Point3D(5.0f,0.0f,0.0f);
		R[2] = Point3D(5.0f,1.0f,0.0f);
		R[3] = Point3D(4.0f,1.0f,0.0f);
		Dart carre = Polygone(R,4);

		Point3D S[3];
		S[0] = Point3D(4.0f,1.2f,0.0f);
		S[1] = Point3D(5.0f,1.2f,0.0f);
		S[2] = Point3D(4.5f,2.2f,0.0f);
		Dart triangle2 = Polygone(S,3);

		Dart haut_carre = phi1(phi1(carre));
		Dart hexa2 = phi1(phi1(phi1(hexa)));

	//	Test du phi1Sew
	//	myMap.phi1sew(hexa,hexa2);
	//	myMap.phi1sew(myMap.phi1(hexa),myMap.phi_1(carre));

		// Génére un maillage à la fin
		Colle(haut_carre,triangle2);
		Colle(hexa2,triangle);
		Colle(phi_1(triangle2),phi_1(hexa2));
		Colle(phi1(hexa),phi_1(carre));

		return hexa;
	}

	// Fonction de creation de la carte (appelee par le main)
	void createMap()
	{
		d_carre = Carre();
		d_tri = Triangle();
		d_multiFaces = MultiFaces();

		Colle(phi1(phi1(d_carre)),d_tri);
		Colle(phi_1(d_multiFaces),phi1(d_carre));
		Colle(phi_1(phi_1(d_multiFaces)),phi1(d_tri));
	}

	// Touche x
	void coupeFace(Dart d, Dart e)
	{
		Point3D p = position[phi1(d)];
		Point3D q = position[phi1(e)];

		Dart dd = newOrientedFace(2);
		Dart ee = phi1(dd);

		phi1sew(d,dd);
		phi1sew(e,ee);
		phi2sew(dd,ee);

		newVertex(ee);
		position[ee] = p;
		newVertex(dd);
		position[dd] = q;
	}

	// Touche y
	void coupeArete(Dart d) {
		Point3D p = position[d];
		Point3D q = position[phi1(d)];
		Point3D milieu = (p + q + Point3D(0.2f,0.2f,0.0f) /* decalage pour voir le point */ )/2;

		Dart dd = newDart();
		phi1sew(d,dd);

		Dart e = phi2(d);
		if (e != d) {
			Dart ee = newDart();
			phi1sew(e,ee);
			phi2unsew(d);
			phi2sew(d,ee);
			phi2sew(e,dd);
		}
		newVertex(dd);
		position[dd] = milieu;
	}

	// Touche z
	void arrondi(Dart d) {
		Dart e = phi_1(d);
		coupeArete(d);
		coupeArete(e);
		e = phi1(e);
		Point3D P = position[d];
		Point3D Q = position[e];
		Point3D R = position[phi1(d)];
		Point3D M = (P + P + Q + R)/4;

		position[d] = M;
	}

	unsigned face_size(Dart d) {
		unsigned n = 0;
		Dart e = d;
		do {
			n++;
			e = phi1(e);
		} while (e != d);
		return n;
	}

	// Touche p
	void triangule() {
		Dart d;
		for (d = begin(); d != end();) {
			if (face_size(d) > 3) {
				coupeFace(d,phi1(phi1(d)));
			}
			else {
				next(d);
			}
		}
	}

	// Touche q
	void fusionSommet(Dart d)
	{
		Point3D P = position[d];
		Point3D Q = position[phi1(d)];
		Point3D M = (P + Q)/2;

		// On attrape des pointeurs sur les brins à manipuler
		Dart dd = phi1(d);
		Dart ddd = phi1(dd);

		Dart e = phi2(d);
		Dart ee = phi1(e);
		Dart eee = phi1(ee);

		Dart dd2 = phi2(dd);
		Dart ee2 = phi2(ee);
		Dart ddd2 = phi2(ddd);
		Dart eee2 = phi2(eee);

		// On découd les triangles du centre
		phi2unsew(d);
		phi2unsew(dd);
		phi2unsew(ee);
		phi2unsew(ddd);
		phi2unsew(eee);
		// On détruit les 2 triangles
		deleteOrientedFace(d);
		deleteOrientedFace(e);
		// On recout les brins restants
		phi2sew(dd2,ddd2);
		phi2sew(ee2,eee2);
		// On plonge le sommet central sur le nouveau point calculé
		newVertex(ddd2);
		position[ddd2] = M;
	}

	// Longueur d'une arête
	double longueur(Dart d)
	{
		Point3D P = position[d];
		Point3D Q = position[phi1(d)];
		Point3D V = P-Q;
		return V.norm();
	}

	// Simplification touche k
	void simplifie()
	{
		Dart dmin = begin();
		double lmin = longueur(dmin);

		Dart d;
		for (d = begin(); d != end(); next(d)) {
			if (longueur(d) < lmin) {
				dmin = d;
				lmin = longueur(d);
			}
		}
		fusionSommet(dmin);
	}

};

// definition de la carte comme variable globale
PFP::MAP myMap;

// pile des brins selectionnes (6 max)
std::vector<Dart> selected_darts;

// Variables pour le picking (sélection de brins à la souris)
PFP::VEC3 rayA;
PFP::VEC3 rayB;
std::vector<PFP::VEC3> inters;
std::vector<Dart> d_faces;
std::vector<Dart> d_edges;
std::vector<Dart> d_vertices;

void MyQT::drawSelected()
{

	typedef Dart Dart;

// FACES

	m_ds->newList(GL_COMPILE_AND_EXECUTE);
	m_ds->lineWidth(5.0f);
	for(unsigned int i=0; i < d_faces.size(); ++i)
	{
		m_ds->begin(GL_POLYGON);
		// fait varier la couleur du plus pres au plus loin
		float c = float (i) / float (d_faces.size());
		m_ds->color3f(1.0f - c , 0.0f, c);

		Dart d = d_faces[i];
		do
		{
			const PFP::VEC3& P = position[d];
			m_ds->vertex(P);
			d = myMap.phi1(d);
		} while (d!=d_faces[i]);

		m_ds->end();
	}


//edges
	m_ds->begin(GL_LINES);
	m_ds->lineWidth(5.0f);
	for(unsigned int i=0; i < d_edges.size(); ++i)
	{
		// fait varier la couleur du plus pres au plus loin
		float c = float (i) / float (d_edges.size());
		m_ds->color3f(1.0f - c , c ,0.);

		Dart d = d_edges[i];
		const PFP::VEC3& P = position[d];
		m_ds->vertex(P);
		d = myMap.phi1(d);
		const PFP::VEC3& Q =  position[d];
		m_ds->vertex(Q);
	}
	m_ds->end();


//VERTICES
//edges
	m_ds->pointSize(9.0f);
	m_ds->begin(GL_POINTS);

	for(unsigned int i=0; i < d_vertices.size(); ++i)
	{
		// fait varier la couleur du plus pres au plus loin
		float c = float (i) / float (d_vertices.size());
		m_ds->color3f(1.0f - c , 0., c);
		Dart d = d_vertices[i];
		const PFP::VEC3& P = position[d];
		m_ds->vertex(P);
	}
	m_ds->end();

	m_ds->endList();
	
	for(unsigned int i=0; i < selected_darts.size(); ++i)
	{
		// fait varier la couleur du plus pres au plus loin
		Dart d = selected_darts[i];
		switch(i)
		{
			case 0:
				m_render_topo->overdrawDart(d, 5, 1.0f,0.0f,0.0f);
				break;
			case 1:
				m_render_topo->overdrawDart(d, 5, 0.0f,1.0f,0.0f);
				break;
			case 2:
				m_render_topo->overdrawDart(d, 5, 0.0f,0.0f,1.0f);
				break;
			case 3:
				m_render_topo->overdrawDart(d, 5, 1.0f,1.0f,0.0f);
				break;
			case 4:
				m_render_topo->overdrawDart(d, 5, 1.0f,0.0f,1.0f);
				break;
			case 5:
				m_render_topo->overdrawDart(d, 5, 0.0f,1.0f,1.0f);
				break;
			default:
				break;
		}
	}

}

void MyQT::cb_initGL()
{
	// choose to use GL version 2
	Utils::GLSLShader::setCurrentOGLVersion(2);

	// create the render
	m_render = new Algo::Render::GL2::MapRender();
	m_render_topo = new Algo::Render::GL2::TopoRenderMapD() ;

	m_ds = new Utils::Drawer();

	// create VBO for position
	m_positionVBO = new Utils::VBO();
	m_normalVBO = new Utils::VBO();

	m_shader = new Utils::ShaderPhong();
	m_shader->setAttributePosition(m_positionVBO);
	m_shader->setAttributeNormal(m_normalVBO);
	m_shader->setDiffuse(Geom::Vec4f(0.0f,0.6f,0.0f,0.0f));
	m_shader->setSpecular(Geom::Vec4f(0.0f,0.0f,0.0f,0.0f)); // no specular

	// using simple shader with color
	m_shader2 = new Utils::ShaderSimpleColor();
	m_shader2->setAttributePosition(m_positionVBO);
	m_shader2->setColor(Geom::Vec4f(0.0f,0.1f,0.0f,0.0f));
	registerShader(m_shader);
	registerShader(m_shader2);
}

void MyQT::cb_redraw()
{
	// update des normales aux sommets
	Algo::Geometry::computeNormalVertices<PFP>(myMap, position, normal) ;

	// update du VBO position (contexte GL necessaire)
	m_positionVBO->updateData(position);
	m_normalVBO->updateData(normal);

	// update des primitives du renderer
	m_render->initPrimitives<PFP>(myMap, allDarts, Algo::Render::GL2::TRIANGLES);
	m_render->initPrimitives<PFP>(myMap, allDarts, Algo::Render::GL2::LINES);

	m_render_topo->updateData<PFP>(myMap, position, 0.9f, 0.9f);

	drawSelected();
	if (renderTopo)
	{
		glEnable( GL_POLYGON_OFFSET_FILL );
		glPolygonOffset( 1.0f, 1.0f );
		m_render_topo->drawTopo();
	}

	glEnable( GL_POLYGON_OFFSET_FILL );
	glPolygonOffset( 1.5f, 1.5f );



	glPolygonOffset( 2.0f, 2.0f );
	glLineWidth(1.0f);
	m_render->draw(m_shader2,Algo::Render::GL2::LINES) ;


	/// Rendu faces pleines
	glEnable(GL_CULL_FACE);
	glFrontFace(GL_CCW);
	glPolygonMode(GL_FRONT,GL_FILL);
	glPolygonMode(GL_BACK,GL_NONE);

	m_render->draw(m_shader,Algo::Render::GL2::TRIANGLES) ;

	glDisable( GL_POLYGON_OFFSET_FILL );
}

void MyQT::cb_keyPress(int keycode)
{
	// coordonnées du clic et calcul du rayon dans l'espace 3D
	int x,y;
	glMousePosition(x,y);
	float dist = getOrthoScreenRay(x,y,rayA,rayB);
	PFP::VEC3 AB = rayB-rayA;

	// tableau de brins pour la sélection
	std::vector<Dart> darts;

	switch(keycode)
	{
	// Bascule affichage topologie - normal
	case 't':
		renderTopo = !renderTopo;
		break;

	// Oublie les brins sélectionnés
	case '0':
		selected_darts.clear();
		break;

	// Sélectionne un brin
	case 'd':
		Algo::Selection::dartsRaySelection<PFP>(myMap, position, rayA, AB, darts, SelectorTrue());

		if (!darts.empty() && selected_darts.size() < 6)
		{
			selected_darts.push_back(darts[0]);
		}
		break;

	// Affiche les informations sur un brin
	case 'D':
		Algo::Selection::dartsRaySelection<PFP>(myMap, position, rayA, AB, darts, SelectorTrue());

		if (!darts.empty()) 
		{
			std::stringstream ss;
			Dart d1 = myMap.phi1(darts[0]);
			Dart d2 = myMap.phi2(darts[0]);
			ss << "dart:" << darts[0].index<<" /phi1:"<< d1.index<<" /phi2:"<< d2.index;

			const Point3D& P = position[darts[0]];
			ss << " /Emb:" << P;
			statusMsg(ss.str().c_str());
		}
		break;

	// Sélectionne des faces
	case 'f':
		d_faces.clear();
		Algo::Selection:: facesRaySelection<PFP>(myMap, position, SelectorTrue(), rayA, AB, d_faces);

		if (!d_faces.empty())
		{
			std::stringstream ss;
			ss << "Face " << d_faces[0].index/3;
			statusMsg(ss.str().c_str());
		}
		break;

	// Sélectionne des arêtes
	case 'a':
		d_edges.clear();
		Algo::Selection::edgesRaySelection<PFP>(myMap, position, SelectorTrue(), rayA, AB, d_edges,dist);

		if (!d_edges.empty())
		{
			std::stringstream ss;
			Dart dd = myMap.phi2(d_edges[0]);
			ss << "Arete:  dart: " << d_edges[0].index<<" phi1: "<< myMap.phi1(d_edges[0]).index;
			if (dd != d_edges[0])
				ss << " phi2: " << dd.index<<" phi1: "<< myMap.phi1(dd).index;
			statusMsg(ss.str().c_str());
		}
		break;

	// Sélectionne des sommets
	case 's':
		d_vertices.clear();
		Algo::Selection::verticesRaySelection<PFP>(myMap, position,rayA, AB, d_vertices,dist,SelectorTrue());

		if (!d_vertices.empty())
		{
			std::stringstream ss;
			ss << "Sommet:  dart: " << d_vertices[0].index << ": " << position[d_vertices[0]]<< "( id emb:"<< myMap.getEmbedding(VERTEX,d_vertices[0])<<")"<< std::endl; ;
			statusMsg(ss.str().c_str());
		}
		break;

	// Opérations utilisant 2 brins
	case 'c':
	case 'm':
	case 'x':
		if (selected_darts.size() >= 2)
		{
			switch (keycode) {
			// Colle 2 arêtes
			case 'c':
				myMap.Colle(selected_darts[0], selected_darts[1]);
				break;
			// Colle 2 arêtes en leur milieu
			case 'm':
				myMap.ColleMilieu(selected_darts[0], selected_darts[1]);
				break;
			// Coupe une face en 2 avec une nouvelle arête
			case 'x':
				myMap.coupeFace(selected_darts[0], selected_darts[1]);
				break;
			}
			selected_darts.clear();
		}
		break;

	// Opérations utilisant un brin
	case 'y':
	case 'z':
	case 'q':
		if (selected_darts.size() >= 1)
		{
			switch (keycode) {
			// Coupe une arête en 2 avec un nouveau sommet
			case 'y':
				myMap.coupeArete(selected_darts[0]);
				break;
			// Arrondi
			case 'z':
				myMap.arrondi(selected_darts[0]);
				break;
			// Fusion de sommet
			case 'q':
				myMap.fusionSommet(selected_darts[0]);
				break;
			}
			selected_darts.clear();
		}
		break;

	// Opérations globales
	// Triangulation
	case 'p':
		myMap.triangule();
		selected_darts.clear();
		break;
	// Simplification
	case 'k':
		myMap.simplifie();
		selected_darts.clear();
		break;
	}
	// Mise à jour de l'affichage
	updateGL();
}

int main(int argc, char **argv)
{
	// interface:
	QApplication app(argc, argv);
	MyQT sqt;

	if (argc == 2) {
		std::vector<std::string> attrNames ;
		Algo::Import::importMesh<PFP>(myMap, argv[1], attrNames) ;
		position = myMap.getAttribute<Point3D>(VERTEX, attrNames[0]) ;
		normal = myMap.addAttribute<PFP::VEC3>(VERTEX, "normal");
		Algo::Geometry::computeNormalVertices<PFP>(myMap, position, normal) ;
	}
	else {
		position = myMap.addAttribute<Point3D>(VERTEX, "position");
		normal = myMap.addAttribute<PFP::VEC3>(VERTEX, "normal");
		myMap.createMap();
		Algo::Geometry::computeNormalVertices<PFP>(myMap, position, normal) ;
	}

	if (myMap.getNbDarts()==0) {
		CGoGNout << "Aucun brin dans la carte. Sortie ..." << CGoGNendl;
		exit(0);
	}

	// Parametre de la fenetre en fonction de la taille du maillage à afficher
	Geom::BoundingBox<Point3D> bb = Algo::Geometry::computeBoundingBox<PFP>(myMap, position);
	float lWidthObj = std::max(std::max(bb.size(0), bb.size(1)), bb.size(2));
	Point3D lPosObj = (bb.min() +  bb.max()) / 2;
	sqt.setParamObject(lWidthObj,lPosObj.data());

	// show pour optenir le contexte GL
	sqt.show();

	// et on attend la fin.
	return app.exec();
}