Commit 2be04a57 authored by Kenneth Vanhoey's avatar Kenneth Vanhoey

update of import/exportPlyPTM for generic and fittingerror support

parent 0b8f3dc2
......@@ -73,7 +73,12 @@ template <typename PFP>
bool exportCTM(typename PFP::MAP& the_map, const typename PFP::TVEC3& position, const std::string& filename, const FunctorSelect& good = SelectorTrue()) ;
/**
* export the map into a PLYPTM file
* export the map into a PLYPTMgeneric file (K. Vanhoey generic format).
*
* exports position + any attribute named : "frame_T" (frame tangent : VEC3), "frame_B" (frame binormal : VEC3), "frame_N" (frame normal : VEC3),
* "colorPTM_a<i> : VEC3" (coefficient number i of the 3 polynomials - one per channel - ; the max i depends on the degree of the PTM polynomial),
* "errL2 : REAL" (L2 fitting error), "errLmax : REAL" (maximal fitting error), "stdDev : REAL" (standard deviation of the L2 fitting errors).
*
* @param map map to be exported
* @param filename filename of ply file
* @param position the position container
......@@ -82,6 +87,17 @@ bool exportCTM(typename PFP::MAP& the_map, const typename PFP::TVEC3& position,
template <typename PFP>
bool exportPlyPTMgeneric(typename PFP::MAP& map, const char* filename, const typename PFP::TVEC3& position, const FunctorSelect& good = SelectorTrue()) ;
/**
* export the map into a PLYPTMgeneric file (K. Vanhoey generic format)
* @param map map to be exported
* @param filename filename of ply file
* @param position the position container
* @param the local frame (3xVEC3 : tangent, bitangent, normal)
* @param colorPTM the 6 coefficients (x3 channels) of the PTM functions
* @return true
*/
template <typename PFP>
bool exportPLYPTM(typename PFP::MAP& map, const char* filename, const typename PFP::TVEC3& position, const typename PFP::TVEC3 frame[3], const typename PFP::TVEC3 colorPTM[6], const FunctorSelect& good) ;
/**
* export pout l'InESS
......
This diff is collapsed.
......@@ -558,8 +558,7 @@ bool MeshTablesSurface<PFP>::importPly(const std::string& filename, std::vector<
* N = 10 for cubic degree polynomial,
* N = 15 for 4th degree polynomial,
* ...
* - K remaining attributes named "remainderNo<k>" where k is an integer from 0 to K-1.
* Hint : N = attrNames.size() - 4 ;
* - K remaining attrNames named "remainderNo<k>" where k is an integer from 0 to K-1.
* @return bool : success.
*/
template <typename PFP>
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment