map2.h 13.7 KB
Newer Older
Pierre Kraemer's avatar
Pierre Kraemer committed
1 2 3
/*******************************************************************************
* CGoGN: Combinatorial and Geometric modeling with Generic N-dimensional Maps  *
* version 0.1                                                                  *
4
* Copyright (C) 2009-2011, IGG Team, LSIIT, University of Strasbourg           *
Pierre Kraemer's avatar
Pierre Kraemer committed
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
*                                                                              *
* This library is free software; you can redistribute it and/or modify it      *
* under the terms of the GNU Lesser General Public License as published by the *
* Free Software Foundation; either version 2.1 of the License, or (at your     *
* option) any later version.                                                   *
*                                                                              *
* This library is distributed in the hope that it will be useful, but WITHOUT  *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or        *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License  *
* for more details.                                                            *
*                                                                              *
* You should have received a copy of the GNU Lesser General Public License     *
* along with this library; if not, write to the Free Software Foundation,      *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301 USA.           *
*                                                                              *
20
* Web site: http://cgogn.u-strasbg.fr/                                         *
Pierre Kraemer's avatar
Pierre Kraemer committed
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
* Contact information: cgogn@unistra.fr                                        *
*                                                                              *
*******************************************************************************/

#ifndef __MAP2_H__
#define __MAP2_H__

#include "Topology/map/map1.h"

namespace CGoGN
{

/*! \brief The class of dual 2-dimensional combinatorial maps:
 *  set of oriented faces pairwise sewed by an adjacency relation.
 *  A dual 2-map represents close or open oriented 2-manifolds (surfaces).
 *  - A dual 2-map is made of darts linked by the phi1 permutation
 * 	and/or the phi2 one-to-one relation.
 *  - In this class darts are interpreted as oriented edges.
 *  - The phi1 relation defines oriented faces (see Map1)
 *  and faces may have arbitrary size (degenerated faces are accepted).
 *  - The phi2 relation links oriented faces along oriented edges.
 *  A set of phi2-linked faces represents a surface 
 *  - Edges that have no phi2-link are border edges. If there exists
 *  such edges the map is open.
 *  - When every edge is phi2-linked, the map is closed. In this case
 *  some optimizations are enabled that speed up the processing of vertices.
 */
class Map2 : public Map1
{
protected:
51
	AttributeMultiVector<Dart>* m_phi2 ;
Pierre Kraemer's avatar
Pierre Kraemer committed
52

53 54
	void init() ;

Pierre Kraemer's avatar
Pierre Kraemer committed
55 56 57 58 59 60 61 62 63
public:
	typedef Map1 ParentMap;

	Map2();

	virtual std::string mapTypeName();

	virtual unsigned int dimension();

64 65
	virtual void clear(bool removeAttrib);

Pierre Kraemer's avatar
Pierre Kraemer committed
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
	/*! @name Basic Topological Operators
	 * Access and Modification
	 *************************************************************************/

	virtual Dart newDart();

	Dart phi2(Dart d);

	template <int N>
	Dart phi(Dart d);

	Dart alpha0(Dart d);

	Dart alpha1(Dart d);

	Dart alpha_1(Dart d);

protected:
	//! Link dart d with dart e by an involution
	/*  @param d,e the darts to link
	 *	- Before:	d->d and e->e
	 *	- After:	d->e and e->d
	 */
	void phi2sew(Dart d, Dart e);

	//! Unlink the current dart by an involution
	/*  @param d the dart to unlink
	 * - Before:	d->e and e->d
	 * - After:		d->d and e->e
	 */
	void phi2unsew(Dart d);

	/*! @name Generator and Deletor
	 *  To generate or delete faces in a 2-map
	 *************************************************************************/

	//@{
	//! Delete an oriented face erasing all its darts.
	/*! The phi2-links around the face are removed
	 *  @param d a dart of the face
	 */
Sylvain Thery's avatar
Sylvain Thery committed
107 108
	void deleteOrientedFace(Dart d) ;	//TODO remove ?

Pierre Kraemer's avatar
Pierre Kraemer committed
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123

public:
	virtual void deleteFace(Dart d) ;
	//@}

	/*! @name Topological Operators
	 *  Topological operations on 2-maps
	 *************************************************************************/

	//@{
	//! Split a vertex v between d and e inserting an edge after d and e
	/*! \pre Darts d & e MUST belong to the same vertex
	 *  @param d first dart in vertex v
	 *  @param e second dart in vertex v
	 */
Sylvain Thery's avatar
Sylvain Thery committed
124 125
	virtual void splitVertex(Dart d, Dart e);	//TODO modification for new boundary managing method

Pierre Kraemer's avatar
Pierre Kraemer committed
126

Pierre Kraemer's avatar
Pierre Kraemer committed
127 128 129 130 131
	//! Delete the vertex of d (works only for internal vertices)
	/*! All the faces around the vertex are merged into one face
	 *  @param d a dart of the vertex to delete
	 * @return true if the deletion has been executed, false otherwise
	 */
Sylvain Thery's avatar
Sylvain Thery committed
132 133
	virtual bool deleteVertex(Dart d) ;	//TODO modification for new boundary managing method

Pierre Kraemer's avatar
Pierre Kraemer committed
134

135 136 137 138 139
	//! Link two vertices belonging to distinct faces (add an edge between the two vertices)
	/*! \pre Dart d and e MUST be different and belong to distinct face
	 *  @param d first dart in the face
	 *  @param e second dart in the face
	 */
Sylvain Thery's avatar
Sylvain Thery committed
140 141
	virtual void linkVertices(Dart d, Dart e);	//TODO removing ??

142

Pierre Kraemer's avatar
Pierre Kraemer committed
143 144 145
	//! Cut the edge of d and its opposite edge if it exists
	/*! @param d a dart of the edge to cut
	 */
Sylvain Thery's avatar
Sylvain Thery committed
146 147
	virtual void cutEdge(Dart d);	//TODO modification for new boundary managing method

Pierre Kraemer's avatar
Pierre Kraemer committed
148

Pierre Kraemer's avatar
Pierre Kraemer committed
149 150 151
	//! Undo the cut of the edge of d and its opposite edge if it exists
	/*! @param d a dart of the edge to uncut
	 */
Sylvain Thery's avatar
Sylvain Thery committed
152 153
	virtual void uncutEdge(Dart d);	//TODO modification for new boundary managing method

Pierre Kraemer's avatar
Pierre Kraemer committed
154

Pierre Kraemer's avatar
Pierre Kraemer committed
155 156
	//! Collapse an edge (that is deleted) possibly merging its vertices
	/*! If delDegenerateFaces is true, the method checks that no degenerate
157
	 *  faces are built (faces with less than 3 edges). If it occurs the faces
Pierre Kraemer's avatar
Pierre Kraemer committed
158 159 160 161 162
	 *  are deleted and the adjacencies are updated (see collapseDegeneratedFace).
	 *  \warning This may produce two distinct vertices if the edge
	 *  was the only link between two border faces
	 *  @param d a dart in the deleted edge
	 *  @param delDegenerateFaces a boolean (default to true)
163
	 *  @return a dart of the resulting vertex
Pierre Kraemer's avatar
Pierre Kraemer committed
164
	 */
Sylvain Thery's avatar
Sylvain Thery committed
165 166
	virtual Dart collapseEdge(Dart d, bool delDegenerateFaces = true);	//TODO modification for new boundary managing method

Pierre Kraemer's avatar
Pierre Kraemer committed
167 168

	/**
169
	 * Flip the edge of d (rotation in phi1 order)
Pierre Kraemer's avatar
Pierre Kraemer committed
170 171 172 173 174 175 176
	 * WARNING : Works only for non-border edges.
	 * @param d a dart of the edge to flip
	 * @return true if the flip has been executed, false otherwise
	 */
	virtual bool flipEdge(Dart d);

	/**
177
	 * Flip the edge of d (rotation in phi_1 order)
Pierre Kraemer's avatar
Pierre Kraemer committed
178 179 180 181 182 183
	 * WARNING : Works only for non-border edges.
	 * @param d a dart of the edge to flip
	 * @return true if the flip has been executed, false otherwise
	 */
	virtual bool flipBackEdge(Dart d);

184 185 186 187 188 189
	//! Insert an edge after a dart in the vertex orbit
	/*! \pre Dart d and e MUST be different and belong to distinct face
	 *  \pre Dart e must be phi2-linked with its phi_1 dart
	 *  @param d dart of the vertex
	 *  @param e dart of the edge
	 */
Sylvain Thery's avatar
Sylvain Thery committed
190 191
	virtual void insertEdgeInVertex(Dart d, Dart e);	//TODO modification for new boundary managing method

192 193 194 195 196

	//! Remove an edge from a vertex orbit
	/*! \pre Dart d must be phi2 sewn
	 *  @param d the dart of the edge to remove from the vertex
	 */
Sylvain Thery's avatar
Sylvain Thery committed
197 198
	virtual void removeEdgeFromVertex(Dart d);	//TODO modification for new boundary managing method

199

Pierre Kraemer's avatar
Pierre Kraemer committed
200 201 202 203 204
	//! Sew two oriented faces along oriented edges
	/*! \pre Darts d & e MUST be fixed point of phi2 relation
	 *  @param d a dart of the first face
	 *  @param e a dart of the second face
	 */
Sylvain Thery's avatar
Sylvain Thery committed
205 206
	virtual void sewFaces(Dart d, Dart e);	//TODO modification for new boundary managing method

Pierre Kraemer's avatar
Pierre Kraemer committed
207 208 209 210

	//! Unsew two oriented faces along oriented edges
	 /*! @param d a dart of one face
	 */
Sylvain Thery's avatar
Sylvain Thery committed
211 212
	virtual void unsewFaces(Dart d);	//TODO modification for new boundary managing method

Pierre Kraemer's avatar
Pierre Kraemer committed
213 214 215 216 217 218 219
	
	//! Delete an oriented face if and only if it has one or two edges
	/*! If the face is phi2-linked to two distinct adjacent faces,
	 *  then those two faces are phi2-linked
	 *  @param d a dart of the face
	 *  @return true if the collapse has been executed, false otherwise
	 */
Sylvain Thery's avatar
Sylvain Thery committed
220 221
	virtual bool collapseDegeneratedFace(Dart d);	//TODO modification for new boundary managing method

Pierre Kraemer's avatar
Pierre Kraemer committed
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

	//! Split a face f between d and e inserting an edge between vertices d & e
	/*! \pre Darts d & e MUST belong to the same face
	 *  @param d first dart in face f
	 *  @param e second dart in face f
	 */
	virtual void splitFace(Dart d, Dart e);

	//! Merge the two faces incident to the edge of d.
	/*! Works only for non-border edges.
	 *  \warning Darts d & phi2(d) no longer exist after the call
	 *  @param d a dart in the first face
	 *  @return true if the merge has been executed, false otherwise
	 */
	virtual bool mergeFaces(Dart d);

	/**
	 * Extract a pair of sewed triangles and sew their adjacent faces
	 * d is a dart of the common edge of the pair of triangles
	 */
Sylvain Thery's avatar
Sylvain Thery committed
242 243
	void extractTrianglePair(Dart d) ;	//TODO modification for new boundary managing method

Pierre Kraemer's avatar
Pierre Kraemer committed
244 245 246 247 248 249

	/**
	 * Insert a pair of sewed triangles in a vertex by exploding the edges of v1 and v2
	 * v1 and v2 belong to the same vertex
	 * d is a dart of the common edge of the pair of triangles
	 */
Sylvain Thery's avatar
Sylvain Thery committed
250 251
	void insertTrianglePair(Dart d, Dart v1, Dart v2) ;	//TODO modification for new boundary managing method

Pierre Kraemer's avatar
Pierre Kraemer committed
252

253 254 255 256 257
	/**
	 * Unsew opposite edges from the faces around a vertex
	 * \warning Darts may have
	 * @param d a dart from the vertex
	 */
Sylvain Thery's avatar
Sylvain Thery committed
258 259
	void unsewAroundVertex(Dart d) ;	//TODO modification for new boundary managing method ???

260 261 262 263 264 265

	/**
	 * Unsex the Umbrella aroud a vertex, close the hole and then
	 * create a symetric to construct a polyedron
	 * @param d a dart from the vertex
	 */
Sylvain Thery's avatar
Sylvain Thery committed
266 267
	void explodPolyhedron(Dart d);	//TODO modification for new boundary managing method ???

268

Pierre Kraemer's avatar
Pierre Kraemer committed
269 270 271 272 273 274 275 276 277 278
	//! Merge two volumes along two faces.
	/*! Works only if the two faces have the same number of edges.
	 *  The faces adjacent to the two given faces are pairwise phi2-linked
	 *  then the 2 faces are deleted.
	 *  If the two faces belong to different surfaces, the surfaces are merged,
	 *  else a handle is created that increases the genus of the surface.
	 *  @param d a dart of the first face
	 *  @param e a dart of the second face
	 *  @return true if the merge has been executed, false otherwise
	 */
Sylvain Thery's avatar
Sylvain Thery committed
279 280
	virtual bool mergeVolumes(Dart d, Dart e);	//TODO modification for new boundary managing method

Pierre Kraemer's avatar
Pierre Kraemer committed
281 282 283 284 285 286 287 288

	//! Close a topological hole (a sequence of connected fixed point of phi2).
	/*! \pre dart d MUST be fixed point of phi2 relation
	 *  Add a face to the map that closes the hole.
	 *  The darts of this face are marked with holeMarker.
	 *  @param d a dart of the hole (with phi2(d)==d)
	 *  @return the degree of the created face
	 */
Sylvain Thery's avatar
Sylvain Thery committed
289 290
	virtual unsigned int closeHole(Dart d);	//TODO modification for new boundary managing method

Pierre Kraemer's avatar
Pierre Kraemer committed
291 292 293 294 295 296 297 298

	//TODO a mettre en algo
	//! Close the map removing topological holes.
	/*! Add faces to the map that close every existing hole.
	 *  These faces are marked.
	 *  \warning The embeddings of vertices are not updated
	 *  @param marker
	 */
Sylvain Thery's avatar
Sylvain Thery committed
299 300
	void closeMap(DartMarker& marker);	//TODO modification for new boundary managing method

Pierre Kraemer's avatar
Pierre Kraemer committed
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
	//@}

	/*! @name Topological Queries
	 *  Return or set various topological information
	 *************************************************************************/

	//@{
	//! Test if dart d and e belong to the same oriented vertex
	/*! @param d a dart
	 *  @param e a dart
	 */
	bool sameOrientedVertex(Dart d, Dart e) ;

	//! Test if dart d and e belong to the same vertex
	/*! @param d a dart
	 *  @param e a dart
	 */
	bool sameVertex(Dart d, Dart e) ;

	/**
	 * compute the number of edges of the vertex of d
	 */
	unsigned int vertexDegree(Dart d) ;

	/**
	 * compute the number of faces in the volume of d
	 */
	unsigned int volumeDegree(Dart d);

	/**
	 * tell if the vertex of d is on the boundary of the map
	 */
	bool isBoundaryVertex(Dart d) ;

	//! Follow the boundary of a surface as if it was a oriented face.
	/*! This operation alternate phi1 and phi2 operator until another
	 *  boudary dart is reached.
	 *  @param d a boundary dart
	 */
	Dart nextOnBoundary(Dart d);

	// TODO a mettre en algo
	/**
	 * check if the mesh is triangular or not
	 * @return a boolean indicating if the mesh is triangular
	 */
	bool isTriangular() ;

Pierre Kraemer's avatar
Pierre Kraemer committed
349
	// TODO a mettre en algo
Pierre Kraemer's avatar
Pierre Kraemer committed
350 351
	/**
	 * Check if map is complete
Pierre Kraemer's avatar
Pierre Kraemer committed
352
	 * Should be executed after import
Pierre Kraemer's avatar
Pierre Kraemer committed
353 354 355 356 357 358 359 360 361 362 363 364 365
	 */
	virtual bool check();
	//@}

	/*! @name Cell Functors
	 *  Apply functors to all darts of a cell
	 *************************************************************************/

	//@{
	//! Apply a functor on every dart of a vertex
	/*! @param d a dart of the vertex
	 *  @param f the functor to apply
	 */
Sylvain Thery's avatar
Sylvain Thery committed
366
	bool foreach_dart_of_vertex(Dart d, FunctorType& f, unsigned int thread=0);
Pierre Kraemer's avatar
Pierre Kraemer committed
367 368 369 370 371

	//! Apply a functor on every dart of a edge
	/*! @param d a dart of the edge
	 *  @param f the functor to apply
	 */
Sylvain Thery's avatar
Sylvain Thery committed
372
	bool foreach_dart_of_edge(Dart d, FunctorType& f, unsigned int thread=0);
Pierre Kraemer's avatar
Pierre Kraemer committed
373 374 375 376 377

	//! Apply a functor on every dart of a volume
	/*! @param d a dart of the volume
	 *  @param f the functor to apply
	 */
Sylvain Thery's avatar
Sylvain Thery committed
378
	bool foreach_dart_of_oriented_volume(Dart d, FunctorType& f, unsigned int thread=0);
Pierre Kraemer's avatar
Pierre Kraemer committed
379

Sylvain Thery's avatar
Sylvain Thery committed
380
	bool foreach_dart_of_volume(Dart d, FunctorType& f, unsigned int thread=0);
Pierre Kraemer's avatar
Pierre Kraemer committed
381 382 383 384 385

	//! Apply a functor on every dart of a connected component
	/*! @param d a dart of the connected component
	 *  @param f the functor to apply
	 */
Sylvain Thery's avatar
Sylvain Thery committed
386
	bool foreach_dart_of_cc(Dart d, FunctorType& f, unsigned int thread=0);
Pierre Kraemer's avatar
Pierre Kraemer committed
387 388 389 390 391 392

	//!
	/*! TODO Ajout a valider
	 * restreint aux complexes simpliciaux
	 * Apply a functor on the all darts in the set of the star from orbit
	 */
Sylvain Thery's avatar
Sylvain Thery committed
393
	bool foreach_dart_of_star(Dart d, unsigned int orbit, FunctorType& f, unsigned int thread=0);
Pierre Kraemer's avatar
Pierre Kraemer committed
394 395 396 397 398 399

	//!
	/*! TODO Ajout a valider
	 * restreint aux complexes simpliciaux
	 * Apply a functor on the all darts in the set of the link from orbit
	 */
Sylvain Thery's avatar
Sylvain Thery committed
400
	bool foreach_dart_of_link(Dart d, unsigned int orbit, FunctorType& f, unsigned int thread=0);
Pierre Kraemer's avatar
Pierre Kraemer committed
401 402 403 404 405 406 407 408 409

	//@}
};

} // namespace CGoGN

#include "Topology/map/map2.hpp"

#endif