map2.cpp 16 KB
Newer Older
Pierre Kraemer's avatar
Pierre Kraemer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
/*******************************************************************************
* CGoGN: Combinatorial and Geometric modeling with Generic N-dimensional Maps  *
* version 0.1                                                                  *
* Copyright (C) 2009, IGG Team, LSIIT, University of Strasbourg                *
*                                                                              *
* This library is free software; you can redistribute it and/or modify it      *
* under the terms of the GNU Lesser General Public License as published by the *
* Free Software Foundation; either version 2.1 of the License, or (at your     *
* option) any later version.                                                   *
*                                                                              *
* This library is distributed in the hope that it will be useful, but WITHOUT  *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or        *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License  *
* for more details.                                                            *
*                                                                              *
* You should have received a copy of the GNU Lesser General Public License     *
* along with this library; if not, write to the Free Software Foundation,      *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301 USA.           *
*                                                                              *
* Web site: https://iggservis.u-strasbg.fr/CGoGN/                              *
* Contact information: cgogn@unistra.fr                                        *
*                                                                              *
*******************************************************************************/

#include "Topology/map/map2.h"

namespace CGoGN
{

/*! @name Generator and Deletor
 *  To generate or delete faces in a 2-map
 *************************************************************************/

void Map2::deleteOrientedFace(Dart d)
{
	Dart e = d ;
	do
	{
		phi2unsew(e) ;		// unsew the face of d
		e = phi1(e) ;		// from all its adjacent faces
	} while (e != d) ;
	Map1::deleteOrientedFace(d);	// delete the face
}

/*! @name Topological Operators
 *  Topological operations on 2-maps
 *************************************************************************/

void Map2::splitVertex(Dart d, Dart e)
{
	assert(sameOrientedVertex(d, e));
	Dart dd = phi2(d) ;
	Dart ee = phi2(e) ;
	Map1::cutEdge(dd);			// Cut the edge of dd (make a new half edge)
	Map1::cutEdge(ee);			// Cut the edge of ee (make a new half edge)
	phi2sew(phi1(dd), phi1(ee));// Sew the two faces along the new edge
}

void Map2::cutEdge(Dart d)
{
	Map1::cutEdge(d);		// Cut the edge of d
	Dart nd = phi1(d);
	Dart e = phi2(d);
	if (e != d)				// Test if an opposite edge exists
	{
		Map1::cutEdge(e);	// Cut the opposite edge
		Dart ne = phi1(e);
		phi2unsew(d);		// Correct the phi2 links
		phi2sew(d, ne);
		phi2sew(e, nd);
	}
}

void Map2::collapseEdge(Dart d, bool delDegenerateFaces)
{
	Dart f;							// A dart in the face to check
	Dart e = phi2(d);				// Test if an opposite edge exists
	if (e != d)
	{
		f = phi1(e);				// A dart in the face of e
		phi2unsew(d);				// Unlink the opposite edges
		if (f != e && delDegenerateFaces)
		{
			Map1::collapseEdge(e);		// Collapse edge e
			collapseDegeneratedFace(f);	// and collapse its face if degenerated
		}
		else
			Map1::collapseEdge(e);	// Just collapse edge e
	}
	f = phi1(d);					// A dart in the face of d
	if (f != d && delDegenerateFaces)
	{
		Map1::collapseEdge(d);		// Collapse edge d
		collapseDegeneratedFace(f);	// and collapse its face if degenerated
	}
	else
		Map1::collapseEdge(d);	// Just collapse edge d
}

bool Map2::flipEdge(Dart d)
{
	Dart e = phi2(d);		// Test if an opposite
	if (e != d)				// edge exists
	{
		Dart dNext = phi1(d);
		Dart eNext = phi1(e);
		Dart dPrev = phi_1(d);
		Dart ePrev = phi_1(e);
		phi1sew(d, ePrev);		// Detach the two
		phi1sew(e, dPrev);		// vertices of the edge
		phi1sew(d, dNext);		// Insert the edge in its
		phi1sew(e, eNext);		// new vertices after flip
		return true ;
	}
	return false ; // cannot flip a border edge
}

bool Map2::flipBackEdge(Dart d)
{
	Dart e = phi2(d);		// Test if an opposite
	if (e != d)				// edge exists
	{
		Dart dNext = phi1(d);
		Dart eNext = phi1(e);
		Dart dPrev = phi_1(d);
		Dart ePrev = phi_1(e);
		phi1sew(d, ePrev);			// Detach the two
		phi1sew(e, dPrev);			// vertices of the edge
		phi1sew(e, phi_1(dPrev));	// Insert the edge in its
		phi1sew(d, phi_1(ePrev));	// new vertices after flip
		return true ;
	}
	return false ; // cannot flip a border edge
}

void Map2::sewFaces(Dart d, Dart e)
{
	phi2sew(d, e);
}

void Map2::unsewFaces(Dart d)
{
	phi2unsew(d);
}

bool Map2::collapseDegeneratedFace(Dart d)
{
	Dart e = phi1(d);				// Check if the face is a loop
	if (phi1(e) == d)				// Yes: it contains one or two edge(s)
	{
		Dart d2 = phi2(d);			// Check opposite edges
		Dart e2 = phi2(e);
		if (d2 != d) phi2unsew(d);	// Update phi2-links if needed
		if (e2 != e) phi2unsew(e);
		if (d2 != d && e2 != e)
			phi2sew(d2, e2);
		Map1::deleteOrientedFace(d);// Delete the single edge or two edges of the loop
		return true ;
	}
	return false ;
}

void Map2::splitFace(Dart d, Dart e)
{
	Map1::splitFace(d, e);			// Split the face
	phi2sew(phi_1(d), phi_1(e));	// Sew the two resulting faces along the new edge
}

bool Map2::mergeFaces(Dart d)
{
	Dart e = phi2(d) ;
	if(e != d)
	{
		phi2unsew(d);			// unsew the face of d
		Map1::mergeFaces(d, e); // merge the two faces along edges of d and e
		return true ;
	}
	return false ;
}

void Map2::extractTrianglePair(Dart d)
{
	assert(isFaceTriangle(d)) ;
	Dart e = phi2(d) ;
	if(e != d)
	{
		assert(isFaceTriangle(e)) ;
		Dart e1 = phi2(phi1(e)) ;
		Dart e2 = phi2(phi_1(e)) ;
		phi2unsew(e1) ;
		phi2unsew(e2) ;
		phi2sew(e1, e2) ;
	}
	Dart d1 = phi2(phi1(d)) ;
	Dart d2 = phi2(phi_1(d)) ;
	phi2unsew(d1) ;
	phi2unsew(d2) ;
	phi2sew(d1, d2) ;
}

void Map2::insertTrianglePair(Dart d, Dart v1, Dart v2)
{
	assert(sameOrientedVertex(v1, v2)) ;
	assert((v1 != v2 && phi2(d) != d) || (v1 == v2 && phi2(d) == d)) ;
	assert(isFaceTriangle(d) && phi2(phi1(d)) == phi1(d) && phi2(phi_1(d)) == phi_1(d)) ;
	Dart e = phi2(d) ;
	if(e != d && v1 != v2)
	{
		assert(isFaceTriangle(e) && phi2(phi1(e)) == phi1(e) && phi2(phi_1(e)) == phi_1(e)) ;
		Dart vv2 = phi2(v2) ;
		phi2unsew(v2) ;
		phi2sew(phi_1(e), v2) ;
		phi2sew(phi1(e), vv2) ;
	}
	Dart vv1 = phi2(v1) ;
	phi2unsew(v1) ;
	phi2sew(phi_1(d), v1) ;
	phi2sew(phi1(d), vv1) ;
}

bool Map2::mergeVolumes(Dart d, Dart e)
{
	// First traversal of both faces to check the face sizes
	// and stored their edges to efficiently access them further
	std::vector<Dart> dDarts;
	std::vector<Dart> eDarts;
	dDarts.reserve(16);		// usual faces have less than 16 edges
	eDarts.reserve(16);

	Dart dFit = d ;
	Dart eFit = phi1(e) ;	// must take phi1 because of the use
	do						// of reverse iterator for sewing loop
	{
		dDarts.push_back(dFit) ;
		dFit = phi1(dFit) ;
	} while(dFit != d) ;
	do
	{
		eDarts.push_back(eFit) ;
		eFit = phi1(eFit) ;
	} while(eFit != phi1(e)) ;

	if(dDarts.size() != eDarts.size())
		return false ;

	// Make the sewing: take darts in initial order (clockwise) in first face
	// and take darts in reverse order (counter-clockwise) in the second face
	std::vector<Dart>::iterator dIt;
	std::vector<Dart>::reverse_iterator eIt;
	for (dIt = dDarts.begin(), eIt = eDarts.rbegin(); dIt != dDarts.end(); ++dIt, ++eIt)
	{
		Dart d2 = phi2(*dIt);			// Search the faces adjacent to dNext and eNext
		Dart e2 = phi2(*eIt);
		if (d2 != *dIt) phi2unsew(d2);	// Unlink the two adjacent faces from dNext and eNext
		if (e2 != *eIt) phi2unsew(e2);
		if (d2 != *dIt && e2 != *eIt) phi2sew(d2,e2); // Link the two adjacent faces together if they exists
	}
	Map1::deleteOrientedFace(d);	// Delete the two alone faces
	Map1::deleteOrientedFace(e);

	return true ;
}

unsigned int Map2::closeHole(Dart d)
{
	assert(phi2(d) == d);		// Nothing to close

	Dart first = newDart();		// First edge of the face that will fill the hole
	unsigned int countEdges = 1;

	phi2sew(d, first);	// phi2-link the new edge to the hole

	Dart dNext = d;	// Turn around the hole
	Dart dPhi1;		// to complete the face
	do
	{
		do
		{
			dPhi1 = phi1(dNext);	// Search and put in dNext
			dNext = phi2(dPhi1);	// the next dart of the hole
		} while (dNext != dPhi1 && dPhi1 != d);

		if (dPhi1 != d)
		{
			Dart next = newDart();	// Add a new edge there and link it to the face
			++countEdges;
			phi1sew(first, next);	// the edge is linked to the face
			phi2sew(dNext, next);	// the face is linked to the hole
		}
	} while (dPhi1 != d);

	if (countEdges == 2)
	{
		countEdges = 0 ;
		collapseDegeneratedFace(first); // if the closing face is 2-sided, collapse it
	}

	return countEdges ;
}

void Map2::closeMap(DartMarker& marker)
{
	// Search the map for topological holes (fixed point for phi2)
	for (Dart d = begin(); d != end(); next(d))
	{
		if (phi2(d) == d)
		{
			closeHole(d);
			marker.markOrbit(FACE_ORBIT, phi2(d)) ;
		}
	}
}

void Map2::reverseOrientation()
{
	DartMarkerNoUnmark mf(*this);

	// reverse all faces (only phi1 is modified)
	for (Dart d = begin(); d != end(); next(d))
	{
		if (!mf.isMarked(d))
		{
			reverseFace(d);
			mf.markOrbit(FACE_ORBIT, d);
		}
	}

	// store all new phi2
	std::vector<Dart> vd;
	vd.reserve(getNbDarts());
	for (Dart d = begin(); d != end(); next(d))
	{
		Dart e = phi_1(phi2(phi1(d)));
		vd.push_back(e);
	}

	// apply the phi2sew with stored phi2 on all darts
	std::vector<Dart>::iterator id = vd.begin();
	for (Dart d = begin(); d != end(); next(d),++id)
	{
		if (mf.isMarked(d))
		{
			mf.unmark(d);		// unmark the two darts
			mf.unmark(*id);
			if (phi2(d) != d)
				phi2unsew(d);	// unsew the two darts if necessary
			if (phi2(*id) != *id)
				phi2unsew(*id);
			phi2sew(d, *id); 	// sew the darts
		}
	}
}

void Map2::computeDual()
{
	AttribContainer& cont = m_attribs[DART_ORBIT] ;

	unsigned int phi1_idx = cont.getAttribute("phi1") ;
	unsigned int new_phi1_idx = cont.addAttribute<Dart>("new_phi1") ;

	AttribMultiVect<Dart>& new_phi1 = cont.getDataVector<Dart>(new_phi1_idx) ;

	for (Dart d = begin() ; d != end() ; next(d))
	{
		Dart dd = alpha1(d) ;
		new_phi1[d.index] = dd ;
		(*m_phi_1)[dd.index] = d ;
	}

	cont.swapAttributes(phi1_idx, new_phi1_idx) ;

	cont.removeAttribute(new_phi1_idx) ;
}

/*! @name Topological Queries
 *  Return or set various topological information
 *************************************************************************/

bool Map2::sameOrientedVertex(Dart d, Dart e)
{
	Dart dNext = d;				// Foreach dart dNext in the vertex of d
	do
	{
		if (dNext == e)			// Test equality with e
			return true;
		dNext = alpha1(dNext);
	} while (dNext != d);
	return false;				// None is equal to e => vertices are distinct
}

unsigned int Map2::vertexDegree(Dart d)
{
	unsigned int count = 0 ;
	Dart dNext = d ;
	do
	{
		++count ;
		if(phi2(dNext) == dNext)
			++count ;
		dNext = alpha1(dNext) ;
	} while (dNext != d) ;
	return count ;
}

unsigned int Map2::volumeDegree(Dart d)
{
	unsigned int count = 0;
	DartMarkerStore mark(*this);		// Lock a marker

	std::vector<Dart> visitedFaces;		// Faces that are traversed
	visitedFaces.reserve(16);
	visitedFaces.push_back(d);			// Start with the face of d
	std::vector<Dart>::iterator face;

	// For every face added to the list
	for (face = visitedFaces.begin(); face != visitedFaces.end(); ++face)
	{
		if (!mark.isMarked(*face))		// Face has not been visited yet
		{
			++count;

			Dart dNext = *face ;
			do
			{
				mark.mark(dNext);					// Mark
				Dart adj = phi2(dNext);				// Get adjacent face
				if (adj != dNext && !mark.isMarked(adj))
					visitedFaces.push_back(adj);	// Add it
				dNext = phi1(dNext);
			} while(dNext != *face);
		}
	}

	return count;
}

bool Map2::isBoundaryVertex(Dart d)
{
	Dart dNext = d ;
	do
	{
		if(phi2(dNext) == dNext)
			return true ;
		dNext = alpha1(dNext) ;
	} while (dNext != d) ;
	return false ;
}

Dart Map2::nextOnBoundary(Dart d)
{
	assert(phi2(d) == d);	// Only work on boundary dart
	Dart dPhi1;
	Dart dNext = d;
	do
	{						// Loop inside the vertex
		dPhi1 = phi1(dNext);
		dNext = phi2(dPhi1);
	} while (dNext != dPhi1);
	return dNext;
}

bool Map2::isTriangular()
{
	DartMarker m(*this) ;
	for(Dart d = begin(); d != end(); next(d))
	{
		if(!m.isMarked(d))
		{
			m.markOrbit(FACE_ORBIT, d) ;
			Dart dd = d ;
			bool t = isFaceTriangle(d) ;
			if(!t)
			{
				return false ;
			}
		}
	}
	return true ;
}

bool Map2::check()
{
	std::cout << "Check: topology begin" << std::endl;
	DartMarker m(*this);
Pierre Kraemer's avatar
Pierre Kraemer committed
485
	for(Dart d = Map2::begin(); d != Map2::end(); Map2::next(d))
Pierre Kraemer's avatar
Pierre Kraemer committed
486 487 488 489 490 491 492 493 494 495 496
	{
		Dart d2 = phi2(d);
		if (phi2(d2) != d)	// phi2 involution ?
		{
			std::cout << "Check: phi2 is not an involution" << std::endl;
			return false;
		}

		Dart d1 = phi1(d);
		if (phi_1(d1) != d)	// phi1 a une image correcte ?
		{
Pierre Kraemer's avatar
Pierre Kraemer committed
497
			std::cout << "Check: inconsistent phi_1 link" << std::endl;
Pierre Kraemer's avatar
Pierre Kraemer committed
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
			return false;
		}

		if (m.isMarked(d1))	// phi1 a un seul antécédent ?
		{
			std::cout << "Check: dart with two phi1 predecessors" << std::endl;
			return false;
		}
		m.mark(d1);

		if (d1 == d)
			std::cout << "Check: (warning) face loop (one edge)" << std::endl;
		if (phi1(d1) == d)
			std::cout << "Check: (warning) face with only two edges" << std::endl;
		if (phi2(d1) == d)
Pierre Kraemer's avatar
Pierre Kraemer committed
513
			std::cout << "Check: (warning) dangling edge" << std::endl;
Pierre Kraemer's avatar
Pierre Kraemer committed
514
	}
Pierre Kraemer's avatar
Pierre Kraemer committed
515
	for(Dart d = Map2::begin(); d != Map2::end(); Map2::next(d))
Pierre Kraemer's avatar
Pierre Kraemer committed
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
	{
		if (!m.isMarked(d))	// phi1 a au moins un antécédent ?
		{
			std::cout << "Check: dart with no phi1 predecessor" << std::endl;
			return false;
		}
	}
	std::cout << "Check: topology ok" << std::endl;
	return true;
}

/*! @name Cell Functors
 *  Apply functors to all darts of a cell
 *************************************************************************/

bool Map2::foreach_dart_of_vertex(Dart d, FunctorType& f)
{
	Dart dNext = d;
	do
	{
		if (f(dNext))
			return true;
		dNext = alpha1(dNext);
 	} while (dNext != d);
 	return false;
}

bool Map2::foreach_dart_of_edge(Dart d, FunctorType& fonct)
{
	if (fonct(d))
		return true;

	Dart d2 = phi2(d);
	if (d2 != d)
		return fonct(d2);
	else
		return false;
}

bool Map2::foreach_dart_of_oriented_volume(Dart d, FunctorType& f)
{
	DartMarkerStore mark(*this);	// Lock a marker
	bool found = false;				// Last functor return value

	std::list<Dart> visitedFaces;	// Faces that are traversed
	visitedFaces.push_back(d);		// Start with the face of d
	std::list<Dart>::iterator face;

	// For every face added to the list
	for (face = visitedFaces.begin(); !found && face != visitedFaces.end(); ++face)
	{
		if (!mark.isMarked(*face))		// Face has not been visited yet
		{
			// Apply functor to the darts of the face
			found = foreach_dart_of_oriented_face(*face, f);

			// If functor returns false then mark visited darts (current face)
			// and add non visited adjacent faces to the list of face
			if (!found)
			{
				Dart dNext = *face ;
				do
				{
					mark.mark(dNext);					// Mark
					Dart adj = phi2(dNext);				// Get adjacent face
					if (adj != dNext && !mark.isMarked(adj))
						visitedFaces.push_back(adj);	// Add it
					dNext = phi1(dNext);
				} while(dNext != *face);
			}
		}
	}
	return found;
}

bool Map2::foreach_dart_of_star(Dart d, unsigned int orbit, FunctorType& f)
{
	if(orbit == VERTEX_ORBIT)
	{

		Dart dNext = d;
		do
		{
			if(Map1::foreach_dart_of_face(dNext,f))
				return true;

			dNext = alpha1(dNext);
		} while (dNext != d);

		return false;
	}
	else if(orbit == FACE_ORBIT)
	{
		if(Map1::foreach_dart_of_face(d,f))
			return true;

		if(phi2(d) != d)
			return Map1::foreach_dart_of_face(phi2(d),f);
		else
			return false;
	}

	return false;
}

bool Map2::foreach_dart_of_link(Dart d, unsigned int orbit, FunctorType& f)
{
	if(orbit == VERTEX_ORBIT)
	{
		Dart dNext = d;
		do
		{
			if(Map2::foreach_dart_of_edge(phi1(dNext),f))
				return true;

			dNext = alpha1(dNext);
		} while (dNext != d);

		return false;
	}
	else if(orbit == FACE_ORBIT)
	{
		if(Map2::foreach_dart_of_vertex(phi_1(d),f))
			return true;

		if(Map2::foreach_dart_of_vertex(phi_1(phi2(d)),f))
			return true;

		return false;
	}

	return false;
}


} // namespace CGoGN