/******************************************************************************* * CGoGN: Combinatorial and Geometric modeling with Generic N-dimensional Maps * * version 0.1 * * Copyright (C) 2009-2012, IGG Team, LSIIT, University of Strasbourg * * * * This library is free software; you can redistribute it and/or modify it * * under the terms of the GNU Lesser General Public License as published by the * * Free Software Foundation; either version 2.1 of the License, or (at your * * option) any later version. * * * * This library is distributed in the hope that it will be useful, but WITHOUT * * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License * * for more details. * * * * You should have received a copy of the GNU Lesser General Public License * * along with this library; if not, write to the Free Software Foundation, * * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * * * Web site: http://cgogn.unistra.fr/ * * Contact information: cgogn@unistra.fr * * * *******************************************************************************/ #include #include "Topology/generic/traversor/traversorCell.h" namespace CGoGN { namespace Algo { namespace Surface { namespace Filtering { template void sigmaBilateral(typename PFP::MAP& map, const VertexAttribute& position, const VertexAttribute& normal, float& sigmaC, float& sigmaS) { typedef typename PFP::VEC3 VEC3 ; float sumLengths = 0.0f ; float sumAngles = 0.0f ; long nbEdges = 0 ; TraversorE t(map); for(Dart d = t.begin(); d != t.end(); d = t.next()) { sumLengths += Algo::Surface::Geometry::edgeLength(map, d, position) ; sumAngles += Geom::angle(normal[d], normal[map.phi1(d)]) ; ++nbEdges ; } // update of returned values sigmaC = 1.0f * ( sumLengths / float(nbEdges) ) ; sigmaS = 2.5f * ( sumAngles / float(nbEdges) ) ; } /** * \brief Function applying a bilateral filter smoothing on the mesh. * \param map the map of the mesh * \param positionIn the current positions container of the mesh * \param positionOut the smoothed positions after the function call * \param normal the normals */ template void filterBilateral( typename PFP::MAP& map, const VertexAttribute& positionIn, VertexAttribute& positionOut, const VertexAttribute& normal) { typedef typename PFP::VEC3 VEC3 ; float sigmaC, sigmaS ; sigmaBilateral(map, positionIn, normal, sigmaC, sigmaS) ; TraversorV t(map) ; for(Dart d = t.begin(); d != t.end(); d = t.next()) { if(!map.isBoundaryVertex(d)) { // get normal of vertex const VEC3& normal_d = normal[d] ; // traversal of incident edges float sum = 0.0f, normalizer = 0.0f ; Traversor2VE te(map, d) ; for(Dart it = te.begin(); it != te.end(); it = te.next()) { VEC3 vec = Algo::Surface::Geometry::vectorOutOfDart(map, it, positionIn) ; float h = normal_d * vec ; float t = vec.norm() ; float wcs = exp( ( -1.0f * (t * t) / (2.0f * sigmaC * sigmaC) ) + ( -1.0f * (h * h) / (2.0f * sigmaS * sigmaS) ) ) ; sum += wcs * h ; normalizer += wcs ; } positionOut[d] = positionIn[d] + ((sum / normalizer) * normal_d) ; } else positionOut[d] = positionIn[d] ; } } template void filterSUSAN(typename PFP::MAP& map, float SUSANthreshold, const VertexAttribute& position, VertexAttribute& position2, const VertexAttribute& normal) { typedef typename PFP::VEC3 VEC3 ; float sigmaC, sigmaS ; sigmaBilateral(map, position, normal, sigmaC, sigmaS) ; long nbTot = 0 ; long nbSusan = 0 ; TraversorV t(map) ; for(Dart d = t.begin(); d != t.end(); d = t.next()) { if(!map.isBoundaryVertex(d)) { // get position & normal of vertex const VEC3& pos_d = position[d] ; const VEC3& normal_d = normal[d] ; // traversal of incident edges float sum = 0.0f, normalizer = 0.0f ; bool SUSANregion = false ; Traversor2VE te(map, d) ; for(Dart it = te.begin(); it != te.end(); it = te.next()) { const VEC3& neighborNormal = normal[map.phi1(it)] ; float angle = Geom::angle(normal_d, neighborNormal) ; if( angle <= SUSANthreshold ) { VEC3 vec = Algo::Surface::Geometry::vectorOutOfDart(map, it, position) ; float h = normal_d * vec ; float t = vec.norm() ; float wcs = exp( ( -1.0f * (t * t) / (2.0f * sigmaC * sigmaC) ) + ( -1.0f * (h * h) / (2.0f * sigmaS * sigmaS) ) ); sum += wcs * h ; normalizer += wcs ; } else SUSANregion = true ; } if(SUSANregion) nbSusan++ ; nbTot++ ; if (normalizer != 0.0f) position2[d] = pos_d + ((sum / normalizer) * normal_d) ; else position2[d] = pos_d ; } else position2[d] = position[d] ; } // CGoGNout <<" susan rate = "<< float(nbSusan)/float(nbTot)<