tetrahedralization.hpp 30.6 KB
Newer Older
Pierre Kraemer's avatar
Pierre Kraemer committed
1
2
3
/*******************************************************************************
 * CGoGN: Combinatorial and Geometric modeling with Generic N-dimensional Maps  *
 * version 0.1                                                                  *
4
 * Copyright (C) 2009-2012, IGG Team, LSIIT, University of Strasbourg           *
Pierre Kraemer's avatar
Pierre Kraemer committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
 *                                                                              *
 * This library is free software; you can redistribute it and/or modify it      *
 * under the terms of the GNU Lesser General Public License as published by the *
 * Free Software Foundation; either version 2.1 of the License, or (at your     *
 * option) any later version.                                                   *
 *                                                                              *
 * This library is distributed in the hope that it will be useful, but WITHOUT  *
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or        *
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License  *
 * for more details.                                                            *
 *                                                                              *
 * You should have received a copy of the GNU Lesser General Public License     *
 * along with this library; if not, write to the Free Software Foundation,      *
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301 USA.           *
 *                                                                              *
20
 * Web site: http://cgogn.unistra.fr/                                           *
Pierre Kraemer's avatar
Pierre Kraemer committed
21
22
23
24
 * Contact information: cgogn@unistra.fr                                        *
 *                                                                              *
 *******************************************************************************/

25
#include "Algo/Modelisation/subdivision.h"
26
27
#include "Algo/Modelisation/subdivision3.h"
#include "Topology/generic/traversor/traversor3.h"
untereiner's avatar
untereiner committed
28

Pierre Kraemer's avatar
Pierre Kraemer committed
29
30
31
32
33
34
namespace CGoGN
{

namespace Algo
{

35
36
37
namespace Volume
{

Pierre Kraemer's avatar
Pierre Kraemer committed
38
39
40
namespace Modelisation
{

untereiner's avatar
untereiner committed
41
namespace Tetrahedralization
Pierre Kraemer's avatar
Pierre Kraemer committed
42
{
untereiner's avatar
untereiner committed
43

44
45
46
47
48
49
50
//template <typename PFP>
//void hexahedronToTetrahedron(typename PFP::MAP& map, Dart d)
//{
//	Dart d1 = d;
//	Dart d2 = map.phi1(map.phi1(d));
//	Dart d3 = map.phi_1(map.phi2(d));
//	Dart d4 = map.phi1(map.phi1(map.phi2(map.phi_1(d3))));
51
//
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
//	Algo::Modelisation::cut3Ear<PFP>(map,d1);
//	Algo::Modelisation::cut3Ear<PFP>(map,d2);
//	Algo::Modelisation::cut3Ear<PFP>(map,d3);
//	Algo::Modelisation::cut3Ear<PFP>(map,d4);
//}
//
//template <typename PFP>
//void hexahedronsToTetrahedrons(typename PFP::MAP& map)
//{
//    TraversorV<typename PFP::MAP> tv(map);
//
//    //for each vertex
//    for(Dart d = tv.begin() ; d != tv.end() ; d = tv.next())
//    {
//        bool vertToTet=true;
//        std::vector<Dart> dov;
//        dov.reserve(32);
//        FunctorStore fs(dov);
//        map.foreach_dart_of_vertex(d,fs);
//        CellMarkerStore<VOLUME> cmv(map);
//
//        //check if all vertices degree is equal to 3 (= no direct adjacent vertex has been split)
//        for(std::vector<Dart>::iterator it=dov.begin();vertToTet && it!=dov.end();++it)
//        {
Thery Sylvain's avatar
Thery Sylvain committed
76
//            if(!cmv.isMarked(*it) && !map.isBoundaryMarked3(*it))
77
78
79
80
81
82
83
84
85
86
87
//            {
//                cmv.mark(*it);
//                vertToTet = (map.phi1(map.phi2(map.phi1(map.phi2(map.phi1(map.phi2(*it))))))==*it); //degree = 3
//            }
//        }
//
//        //if ok : create tetrahedrons around the vertex
//        if(vertToTet)
//        {
//            for(std::vector<Dart>::iterator it=dov.begin();it!=dov.end();++it)
//            {
Thery Sylvain's avatar
Thery Sylvain committed
88
//                if(cmv.isMarked(*it) && !map.isBoundaryMarked3(*it))
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
//                {
//                    cmv.unmark(*it);
//                    cut3Ear<PFP>(map,*it);
//                }
//            }
//        }
//    }
//}
//
//template <typename PFP>
//void tetrahedrizeVolume(typename PFP::MAP& map, VertexAttribute<typename PFP::VEC3>& position)
//{
//	//mark bad edges
//	DartMarkerStore mBadEdge(map);
//
//	std::vector<Dart> vEdge;
//	vEdge.reserve(1024);
//
////	unsignzed int i = 0;
//
//	unsigned int nbEdges = map.template getNbOrbits<EDGE>();
//	unsigned int i = 0;
//
//	for(Dart dit = map.begin() ; dit != map.end() ; map.next(dit))
//	{
//		//check if this edge is an "ear-edge"
//		if(!mBadEdge.isMarked(dit))
//		{
//			++i;
//			std::cout << i << " / " << nbEdges << std::endl;
//
//			//search three positions
//			typename PFP::VEC3 tris1[3];
//			tris1[0] = position[dit];
//			tris1[1] = position[map.phi_1(dit)];
//			tris1[2] = position[map.phi_1(map.phi2(dit))];
//
//			//search if the triangle formed by these three points intersect the rest of the mesh (intersection triangle/triangle)
//			TraversorF<typename PFP::MAP> travF(map);
//			for(Dart ditF = travF.begin() ; ditF != travF.end() ; ditF = travF.next())
//			{
//				//get vertices position
//				typename PFP::VEC3 tris2[3];
//				tris2[0] = position[ditF];
//				tris2[1] = position[map.phi1(ditF)];
//				tris2[2] = position[map.phi_1(ditF)];
//
//				bool intersection = false;
//
//				for (unsigned int i = 0; i < 3 && !intersection; ++i)
//				{
//					typename PFP::VEC3 inter;
//					intersection = Geom::intersectionSegmentTriangle(tris1[i], tris1[(i+1)%3], tris2[0], tris2[1], tris2[2], inter);
//				}
//
//				if(!intersection)
//				{
//					for (unsigned int i = 0; i < 3 && !intersection; ++i)
//					{
//						typename PFP::VEC3 inter;
//						intersection = Geom::intersectionSegmentTriangle(tris2[i], tris2[(i+1)%3], tris1[0], tris1[1], tris1[2], inter);
//					}
//				}
//
//				//std::cout << "intersection ? " << (intersection ? "true" : "false") << std::endl;
//
//				if(intersection)
//				{
//					mBadEdge.markOrbit<EDGE>(dit);
//				}
//				else //cut a tetrahedron
//				{
//					vEdge.push_back(dit);
//				}
//
//
////
////				if(i == 16)
////					return;
//			}
//		}
//	}
//
//	std::cout << "nb edges to split = " << vEdge.size() << std::endl;
//	i = 0;
//	for(std::vector<Dart>::iterator it = vEdge.begin() ; it != vEdge.end() ; ++it)
//	{
//		++i;
//		std::cout << i << " / " << vEdge.size() << std::endl;
//
//		Dart dit = *it;
//
//		//std::cout << "cut cut " << std::endl;
//		std::vector<Dart> vPath;
//
//		vPath.push_back(map.phi1(dit));
//		vPath.push_back(map.phi1(map.phi2(map.phi_1(dit))));
//		vPath.push_back(map.phi_1(map.phi2(dit)));
//
//		map.splitVolume(vPath);
//
//		map.splitFace(map.phi2(map.phi1(dit)), map.phi2(map.phi1(map.phi2(dit))));
//	}
//
//	std::cout << "finished " << std::endl;
//}
195

untereiner's avatar
untereiner committed
196

197
/************************************************************************************************
198
199
 * 									Collapse / Split Operators
 ************************************************************************************************/
Pierre Kraemer's avatar
Pierre Kraemer committed
200

201
202
203
template <typename PFP>
Dart splitVertex(typename PFP::MAP& map, std::vector<Dart>& vd)
{
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
    //split the vertex
    Dart dres = map.splitVertex(vd);

    //split the faces incident to the new vertex
    Dart dbegin = map.phi1(map.phi2(vd.front()));
    Dart dit = dbegin;
    do
    {
        map.splitFace(map.phi1(dit),map.phi_1(dit));
        dit = map.alpha2(dit);
    }
    while(dbegin != dit);

    //split the volumes incident to the new vertex
    for(unsigned int i = 0; i < vd.size(); ++i)
    {
        Dart dit = vd[i];

        std::vector<Dart> v;
        v.push_back(map.phi1(map.phi1(map.phi2(dit))));
        std::cout << "[" << v.back();
        v.push_back(map.phi1(dit));
        std::cout << " - " << v.back();
        v.push_back(map.phi1(map.phi2(map.phi_1(dit))));
        std::cout << " - " << v.back() << "]" << std::endl;
        map.splitVolume(v);
    }

    return dres;
233
234
}

235
236
237
/*************************************************************************************************
 *		 								Tetrahedron functions									 *
 *************************************************************************************************/
Pierre Kraemer's avatar
Pierre Kraemer committed
238
239

template <typename PFP>
Pierre Kraemer's avatar
Pierre Kraemer committed
240
bool isTetrahedron(typename PFP::MAP& map, Dart d, unsigned int thread)
Pierre Kraemer's avatar
Pierre Kraemer committed
241
{
242
243
244
    unsigned int nbFaces = 0;

    //Test the number of faces end its valency
Pierre Kraemer's avatar
Pierre Kraemer committed
245
	Traversor3WF<typename PFP::MAP> travWF(map, d, false, thread);
246
247
248
249
250
251
252
253
    for(Dart dit = travWF.begin() ; dit != travWF.end(); dit = travWF.next())
    {
        //increase the number of faces
        nbFaces++;
        if(nbFaces > 4)	//too much faces
            return false;

        //test the valency of this face
Pierre Kraemer's avatar
Pierre Kraemer committed
254
		if(map.faceDegree(dit) != 3)
255
256
257
258
            return false;
    }

    return true;
Pierre Kraemer's avatar
Pierre Kraemer committed
259
260
}

261
template <typename PFP>
262
bool isTetrahedralization(typename PFP::MAP& map)
263
{
264
265
266
267
268
269
270
271
    TraversorW<typename PFP::MAP> travW(map);
    for(Dart dit = travW.begin() ; dit != travW.end() ; dit = travW.next())
    {
        if(!isTetrahedron<PFP>(map, dit))
            return false;
    }

    return true;
272
273
}

274
275
276
/***********************************************************************************************
 * 										swap functions										   *
 ***********************************************************************************************/
Pierre Kraemer's avatar
Pierre Kraemer committed
277

278
template <typename PFP>
279
Dart swap2To2(typename PFP::MAP& map, Dart d)
280
{
281
    std::vector<Dart> edges;
282

283
284
285
286
    Dart d2_1 = map.phi_1(map.phi2(d));
    map.mergeVolumes(d);
    map.mergeFaces(map.phi1(d2_1));
    map.splitFace(d2_1, map.phi1(map.phi1(d2_1)));
287

288
289
290
291
292
293
294
295
        Dart stop = map.phi_1(d2_1);
        Dart dit = stop;
        do
        {
            edges.push_back(dit);
            dit = map.phi1(map.phi2(map.phi1(dit)));
        }
        while(dit != stop);
296

297
        map.splitVolume(edges);
Pierre Kraemer's avatar
Pierre Kraemer committed
298

299
    return map.phi2(stop);
Pierre Kraemer's avatar
Pierre Kraemer committed
300
301
302
}

template <typename PFP>
303
void swap4To4(typename PFP::MAP& map, Dart d)
Pierre Kraemer's avatar
Pierre Kraemer committed
304
{
305
306
    Dart e = map.phi2(map.phi3(d));
    Dart dd = map.phi2(d);
Pierre Kraemer's avatar
Pierre Kraemer committed
307

308
309
310
    //unsew middle crossing darts
    map.unsewVolumes(d);
    map.unsewVolumes(map.phi2(map.phi3(dd)));
Pierre Kraemer's avatar
Pierre Kraemer committed
311

312
313
    Dart d1 = Tetrahedralization::swap2To2<PFP>(map, dd);
    Dart d2 = Tetrahedralization::swap2To2<PFP>(map, e);
Pierre Kraemer's avatar
Pierre Kraemer committed
314

315
316
317
    //sew middle darts so that they do not cross
    map.sewVolumes(map.phi2(d1),map.phi2(map.phi3(d2)));
    map.sewVolumes(map.phi2(map.phi3(d1)),map.phi2(d2));
Pierre Kraemer's avatar
Pierre Kraemer committed
318
319
320
}

template <typename PFP>
321
Dart swap3To2(typename PFP::MAP& map, Dart d)
Pierre Kraemer's avatar
Pierre Kraemer committed
322
{
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
    std::vector<Dart> edges;

    Dart stop = map.phi_1(map.phi2(map.phi1(d)));
    Dart d2 = map.phi2(d);
    Dart d21 = map.phi1(d2);
    map.mergeVolumes(d);
    map.mergeFaces(d2);
    map.mergeVolumes(d21);

    Dart dit = stop;
    do
    {
        edges.push_back(dit);
        dit = map.phi1(map.phi2(map.phi1(dit)));
    }
    while(dit != stop);
    map.splitVolume(edges);

    return map.phi3(stop);
Pierre Kraemer's avatar
Pierre Kraemer committed
342
343
344
345
346
}

//[precond] le brin doit venir d'une face partagé par 2 tetraèdres
// renvoie un brin de l'ancienne couture entre les 2 tetras qui est devenu une arête
template <typename PFP>
347
Dart swap2To3(typename PFP::MAP& map, Dart d)
Pierre Kraemer's avatar
Pierre Kraemer committed
348
{
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
    std::vector<Dart> edges;

    Dart d2_1 = map.phi_1(map.phi2(d));
    map.mergeVolumes(d);

    //
    // Cut the 1st tetrahedron
    //
    Dart stop = d2_1;
    Dart dit = stop;
    do
    {
        edges.push_back(dit);
        dit = map.phi1(map.phi2(map.phi1(dit)));
    }
    while(dit != stop);

    map.splitVolume(edges);
    map.splitFace(map.alpha2(edges[0]), map.alpha2(edges[2]));

    //
    // Cut the 2nd tetrahedron
    //
    edges.clear();
    stop = map.phi1(map.phi2(d2_1));
    dit = stop;
    do
    {
        edges.push_back(dit);
        dit = map.phi1(map.phi2(map.phi1(dit)));
    }
    while(dit != stop);
    map.splitVolume(edges);

    return map.phi1(d2_1);
384
}
untereiner's avatar
untereiner committed
385

386
387
388
template <typename PFP>
Dart swap5To4(typename PFP::MAP& map, Dart d)
{
389
390
    Dart t1 = map.phi3(d);
    Dart t2 = map.phi3(map.phi2(d));
untereiner's avatar
untereiner committed
391

392
393
    Dart d323 = map.phi_1(map.phi2(map.phi1(d)));
    Dart dswap = map.phi2(map.phi3(d323));
untereiner's avatar
untereiner committed
394

395
396
397
398
399
    map.unsewVolumes(t1);
    map.unsewVolumes(t2);
    map.unsewVolumes(d323);
    map.unsewVolumes(map.phi2(d323));
    map.deleteVolume(d);
untereiner's avatar
untereiner committed
400

401
    Dart d1 = Tetrahedralization::swap2To2<PFP>(map, dswap);
untereiner's avatar
untereiner committed
402

403
404
    map.sewVolumes(map.phi2(d1), t1);
    map.sewVolumes(map.phi2(map.phi3(d1)),t2);
untereiner's avatar
untereiner committed
405

406
    return t1;
407
}
untereiner's avatar
untereiner committed
408

409
410
411
template <typename PFP>
void swapGen3To2(typename PFP::MAP& map, Dart d)
{
412
    unsigned int n = map.edgeDegree(d);
413

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
    if(n >= 4)
    {
        Dart dit = d;
        for(unsigned int i = 0 ; i < n - 4 ; ++i)
        {
            dit = map.phi2(Tetrahedralization::swap2To3<PFP>(map, dit));
        }
        Tetrahedralization::swap4To4<PFP>(map,  map.alpha2(dit));
    }

//	if(n >= 4)
//	{
//		Dart dit = d;
//		if(map.isBoundaryEdge(dit))
//		{
//			for(unsigned int i = 0 ; i < n - 2 ; ++i)
//			{
//				dit = map.phi2(Tetrahedralization::swap2To3<PFP>(map, dit));
//			}
//			Tetrahedralization::swap2To2<PFP>(map, dit);
//		}
//		else
//		{
//			for(unsigned int i = 0 ; i < n - 4 ; ++i)
//			{
//				dit = map.phi2(Tetrahedralization::swap2To3<PFP>(map, dit));
//			}
//			Tetrahedralization::swap4To4<PFP>(map,  map.alpha2(dit));
//		}
//	}
//	else if (n == 3)
//	{
//		Dart dres = Tetrahedralization::swap2To3<PFP>(map, d);
//		Tetrahedralization::swap2To2<PFP>(map, map.phi2(dres));
//	}
//	else // si (n == 2)
//	{
//		Tetrahedralization::swap2To2<PFP>(map, d);
//	}
453
454
455
456
457
}

template <typename PFP>
void swapGen2To3(typename PFP::MAP& map, Dart d)
{
458
//	unsigned int n = map.edgeDegree(d);
459

460
//- a single 2-3 swap, followed by n − 3 3-2 swaps, or
461
//- a single 4-4 swap, followed by n − 4 3-2 swaps.
462
463
}

464
465
466
/************************************************************************************************
 *										Flip Functions 											*
 ************************************************************************************************/
untereiner's avatar
untereiner committed
467

468
template <typename PFP>
469
Dart flip1To4(typename PFP::MAP& map, Dart d)
470
{
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
    std::vector<Dart> edges;

    //
    // Cut the 1st tetrahedron
    //
    edges.push_back(map.phi2(d));
    edges.push_back(map.phi2(map.phi1(d)));
    edges.push_back(map.phi2(map.phi_1(d)));
    map.splitVolume(edges);

    Dart x = Surface::Modelisation::trianguleFace<PFP>(map,map.phi2(d));

    //
    // Cut the 2nd tetrahedron
    //
    Dart dit = map.phi2(map.phi3(x));
    edges.clear();
    edges.push_back(dit);
    dit = map.phi1(map.phi2(map.phi1(dit)));
    edges.push_back(dit);
    dit = map.phi1(dit);
    edges.push_back(dit);
    dit = map.phi1(map.phi2(map.phi1(dit)));
    edges.push_back(dit);

    map.splitVolume(edges);
    map.splitFace(map.phi1(map.phi2(edges[0])),map.phi1(map.phi2(edges[2])));

    //
    // Cut the 3rd tetrahedron
    //
    dit = map.phi3(map.phi1(map.phi2(edges[0])));
    edges.clear();
    edges.push_back(dit);
    dit = map.phi1(map.phi2(map.phi1(dit)));
    edges.push_back(dit);
    dit = map.phi1(map.phi2(map.phi1(dit)));
    edges.push_back(dit);

    map.splitVolume(edges);

    return x;
513
514
}

515
template <typename PFP>
516
Dart flip1To3(typename PFP::MAP& map, Dart d)
517
{
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
    std::vector<Dart> edges;

    //
    // Triangule one face
    //
    Dart x = Surface::Modelisation::trianguleFace<PFP>(map,d);

    //
    // Cut the 1st Tetrahedron
    //
    Dart dit = x;
    edges.push_back(dit);
    dit = map.phi1(map.phi2(map.phi1(dit)));
    edges.push_back(dit);
    dit = map.phi1(map.phi2(map.phi1(dit)));
    edges.push_back(dit);
    dit = map.phi1(map.phi2(map.phi1(dit)));
    edges.push_back(dit);

    map.splitVolume(edges);

    // Cut the 2nd Tetrahedron
    map.splitFace(map.phi1(map.phi2(edges[0])),map.phi1(map.phi2(edges[2])));

    // Cut the 3rd Tetrahedron
    dit = map.phi1(map.phi2(edges[0]));
    edges.clear();
    edges.push_back(dit);
    dit = map.phi1(map.phi2(map.phi1(dit)));
    edges.push_back(dit);
    dit = map.phi1(map.phi2(map.phi1(dit)));
    edges.push_back(dit);

    map.splitVolume(edges);

    return x;
554
}
untereiner's avatar
untereiner committed
555

556
/************************************************************************************************
557
 *                				 Bisection Functions                                            *
558
 ************************************************************************************************/
Pierre Kraemer's avatar
Pierre Kraemer committed
559

560
template <typename PFP>
561
Dart edgeBisection(typename PFP::MAP& map, Dart d)
562
{
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
    //coupe l'arete en 2
    map.cutEdge(d);
    Dart e = map.phi1(d);

    Dart dit = e;
    do
    {
        map.splitFace(dit, map.phi1(map.phi1(dit)));
        dit = map.alpha2(dit);
    }
    while(dit != e);

    dit = e;
    std::vector<Dart> edges;
    do
    {
        if(!map.isBoundaryMarked3(dit))
        {
            edges.push_back(map.phi_1(dit));
            edges.push_back(map.phi_1(map.phi2(map.phi_1(edges[0]))));
            edges.push_back(map.phi1(map.phi2(dit)));
            map.splitVolume(edges);
            edges.clear();
        }
        dit = map.alpha2(dit);
    }
    while(dit != e);

    return e;
Pierre Kraemer's avatar
Pierre Kraemer committed
592
}
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848

//namespace Tetgen
//{


//template <typename PFP>
//bool tetrahedralize(const typename PFP::MAP2& map2, const VertexAttribute<typename PFP::VEC3> position2,
//                    typename PFP::MAP3& map3, VertexAttribute<typename PFP::VEC3> position3,
//                    bool add_steiner_points_on_exterior_boundary, bool add_steiner_points_on_interior_boundary, double max_volume, double max_shape)
//{
//    //
//    // 1. map to tetgen
//    //

//    tetgenio surface;

//    // memory initialization
//    surface.initialize();

//    // 0-based indexing
//    surface.firstnumber = 0;

//    // input vertices
//    surface.numberofpoints = map2.nbOrbits<VERTEX>();
//    surface.pointlist = new REAL[surface.numberofpoints * 3];

//    //for each vertex
//    unsigned int i = 0;
//    TraversorV tv(map2);
//    for(Dart it = tv.begin() ; it != tv.end() ; it = tv.next())
//    {
//        surface.pointlist[i] = position2[it][0] ; i++ ; //x
//        surface.pointlist[i] = position2[it][1] ; i++ ; //y
//        surface.pointlist[i] = position2[it][2] ; i++ ; //z
//    }

//    tetgenio::facet* f ;
//    tetgenio::polygon* p ;
//    surface.numberoffacets = map2.nbOrbits<FACE>();
//    surface.facetlist = new tetgenio::facet[surface.numberoffacets] ;


//    //for each facet
//    i = 0;
//    TraversorF tf(map2);
//    for(Dart it = tf.begin() ; it != tf.end() ; it = tf.next())
//    {
//        f = &(surface.facetlist[i]) ;
//        f->numberofpolygons = 1 ;
//        f->polygonlist = new tetgenio::polygon[f->numberofpolygons] ;
//        p = f->polygonlist ;
//        p->numberofvertices = map2.faceDegree(it);
//        p->vertexlist = new int[p->numberofvertices] ;

//        unsigned int j = 0;
//        Dart dit = it;
//        do
//        {
//            p->vertexlist[j] = map2.getEmbedding<VERTEX>(dit);
//            dit = map.phi1(dit);
//            j++;
//        }while(dit != it);

//        f->numberofholes = 0 ;
//        f->holelist = nil ;
//        i++ ;
//    }

//    //
//    // 2. tetgen argument list
//    //
//    std::ostringstream s ;

//    // Q: Quiet: No terminal output except errors
//    // p: PLC : input data is surfacic
//    // n: output tet neighbors

//    // q: desired quality
//    if(max_volume > 0 && max_shape > 0.0)
//    {
//        s << "Qpna" << max_volume << "q"<< max_shape;
//    }
//    else if(max_volume > 0.0)
//    {
//        s << "Qpna" << max_volume ;
//    }
//    else if(max_shape > 0.0)
//    {
//        s << "Qpnq" << max_shape ;
//    }
//    else
//    {
//        s << "Qpn";
//    }

//    // YY: prohibit steiner points on boundaries
//    // (first Y for exterior boundary, second Y for the
//    // other ones).

//    if( add_steiner_points_on_exterior_boundary && !add_steiner_points_on_interior_boundary)
//    {
//       //Invalid combination of flags (do not preserve exterior boundary and preserve interior ones) - preserving exterior boundary as well
//        add_steiner_points_on_exterior_boundary = false ;
//    }

//    if(!add_steiner_points_on_exterior_boundary)
//    {
//        s << "Y" ;
//    }

//    if(!add_steiner_points_on_interior_boundary)
//    {
//        s << "Y" ;
//    }
//    std::string params = s.str() ;

//    //
//    // 3. tetrahedralization
//    //
//    tetgenio volume;
//    ::tetrahedralize(params.c_str(), &surface, &volume) ;


//    //
//    // 4. tetgen to map
//    //

//    //create vertices
//    double* p = volume.pointlist ;
//    std::vector<unsigned int> verticesID;
//    verticesID.reserve(volume.numberofpoints);
//    AttributeContainer& container = map3.template getAttributeContainer<VERTEX>() ;

//    for(unsigned int i = 0; i < volume.numberofpoints; i++)
//    {
//        typename PFP::VEC3 pos(p[0], p[1], p[2]);
//        unsigned int id = container.insertLine();

//        position3[id] = pos;
//        verticesID.push_back(id);

//        p += 3 ;
//    }

//    //create tetrahedrons
//    int* t = volume.tetrahedronlist ;
//    for(unsigned int i = 0; i < volume.numberoftetrahedra; i++)
//    {
//        Dart d = Algo::Surface::Modelisation::createTetrahedron<PFP>(map3, false);

//        for(unsigned int j = 0; j < 3; j++)
//        {
//            FunctorSetEmb<typename PFP::MAP, VERTEX> fsetemb(map, verticesID[t[j] - volume.firstnumber]);
//            map.template foreach_dart_of_orbit<PFP::MAP::VERTEX_OF_PARENT>(d, fsetemb);

////            //store darts per vertices to optimize reconstruction
////            Dart dd = d;
////            do
////            {
////                m.mark(dd) ;
////                vecDartsPerVertex[pt[2-j]].push_back(dd);
////                dd = map.phi1(map.phi2(dd));
////            } while(dd != d);

//            d = map.phi1(d);

//            set_cell_vertex(d, j, verticesID[t[j] - volume.firstnumber]) ;
//        }

//        t += 4 ;
//    }

//    //create adjacency
//    int* pn = volume.neighborlist ;
//    for(unsigned int i = 0; i < volume.numberoftetrahedra; i++)
//    {
//        for(int j=0; j<4; j++)
//        {
//            int adjacent = pn[j] ;

//            if(adjacent >= 0)
//            {
//                set_cell_adjacent( cells[i], j, cells[adjacent - volume.firstnumber]
//                ) ;
//            }
//        }
//        pn += 4 ;
//    }
//}

///**
// * generate tetrahedra based on an surface mesh object
// */
//template <typename PFP>
//bool process(const std::string& filename, typename PFP::MAP3& map3, bool add_steiner_points_on_exterior_boundary,
//             bool add_steiner_points_on_interior_boundary, double max_volume, double max_shape)
//{

//}



///**
// * generate tetrahedra based on an surface mesh object
// * -INT_MAX for surf/vol-id inherits from the mesh
// */
//template <typename PFP2, typename PFP3>
//typename PFP3::MAP process(typename PFP2::MAP& map, double volume, double quality, int volid = -INT_MAX, int surfid = -INT_MAX)
//{
//    //
//    // map to tetgen
//    //


//    tetgenio surface;
//    tetgenio::facet *f;
//    tetgenio::polygon *p;
//    int *elements, *surfaces;
//    int i, j, n, *ele, *tet;
//    char params [512];


//    // memory initialization
//    surface.initialize();

//    // 0-based indexing
//    surface.firstnumber = 0;

//    // input vertices
//    surface.numberofpoints =
//    surface.pointlist = new REAL[surface.numberofpoints * 3];


//    // input faces

//}

///**
// * generate tetrahedra based on an surface mesh object
// * -INT_MAX for surf/vol-id inherits from the mesh
// */
//template <typename PFP3>
//typename PFP3::MAP process(const std::string& filename, double volume, double quality, int volid = -INT_MAX, int surfid = -INT_MAX)
//{

//}

//} //namespace Tetgen








untereiner's avatar
untereiner committed
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
///**
// * create a tetra based on the two triangles that have a common dart and phi2(dart)
// * return a new dart inside the tetra
// */
//template<typename PFP>
//Dart extractTetra(typename PFP::MAP& the_map, Dart d)
//{
//
//
//	Dart e = the_map.phi2(d);
//
//	//create the new faces
//	Dart dd = the_map.newFace(3);
//	Dart ee = the_map.newFace(3);
//
//	//update their sew
//	the_map.sewFaces(dd,ee);
//	the_map.sewFaces(the_map.phi3(dd),the_map.phi3(ee));
//
//	//add the two new faces in the mesh to obtain a tetra
//	Dart s2d = the_map.phi2(the_map.phi_1(d));
//	the_map.unsewFaces(the_map.phi_1(d));
//	the_map.sewFaces(the_map.phi_1(d),the_map.phi_1(dd));
//	the_map.sewFaces(s2d,the_map.phi3(the_map.phi_1(dd)));
//
//	Dart s2e = the_map.phi2(the_map.phi_1(e));
//	the_map.unsewFaces(the_map.phi_1(e));
//	the_map.sewFaces(the_map.phi_1(e),the_map.phi_1(ee));
//	the_map.sewFaces(s2e,the_map.phi3(the_map.phi_1(ee)));
//
//	Dart ss2d = the_map.phi2(the_map.phi1(d));
//	the_map.unsewFaces(the_map.phi1(d));
//	the_map.sewFaces(the_map.phi1(d),the_map.phi1(ee));
//	the_map.sewFaces(ss2d,the_map.phi3(the_map.phi1(ee)));
//
//	Dart ss2e = the_map.phi2(the_map.phi1(e));
//	the_map.unsewFaces(the_map.phi1(e));
//	the_map.sewFaces(the_map.phi1(e),the_map.phi1(dd));
//	the_map.sewFaces(ss2e,the_map.phi3(the_map.phi1(dd)));
//
//	//embed the coords
//	the_map.setVertexEmb(d,the_map.getVertexEmb(d));
//	the_map.setVertexEmb(e,the_map.getVertexEmb(e));
//	the_map.setVertexEmb(the_map.phi_1(d),the_map.getVertexEmb(the_map.phi_1(d)));
//	the_map.setVertexEmb(the_map.phi_1(e),the_map.getVertexEmb(the_map.phi_1(e)));
//
//	return dd;
//}
//
///**
// * tetrahedrization of the volume
// * @param the map
// * @param a dart of the volume
// * @param true if the faces are in CCW order
// * @return success of the tetrahedrization
// */
//template<typename PFP>
//bool smartVolumeTetrahedrization(typename PFP::MAP& the_map, Dart d, bool CCW=true)
//{
//
//	typedef typename PFP::EMB EMB;
//
//	bool ret=true;
//
//	if (!the_map.isTetrahedron(d))
//	{
//		//only works on a 3-map
//		assert(Dart::nbInvolutions()>=2 || "cannot be applied on this map, nbInvolutions must be at least 2");
//
//		if (Geometry::isConvex<PFP>(the_map,d,CCW))
//		{
//			the_map.tetrahedrizeVolume(d);
//		}
//		else
//		{
//
//			//get all the dart of the volume
//			std::vector<Dart> vStore;
//			FunctorStore fs(vStore);
//			the_map.foreach_dart_of_volume(d,fs);
//
//			if (vStore.size()==0)
//			{
//				if (the_map.phi1(d)==d)
//					CGoGNout << "plop" << CGoGNendl;
//				if (the_map.phi2(d)==d)
//					CGoGNout << "plip" << CGoGNendl;
//
//				CGoGNout << the_map.getVertexEmb(d)->getPosition() << CGoGNendl;
//				CGoGNout << "tiens tiens, c'est etrange" << CGoGNendl;
//			}
//			//prepare the list of embeddings of the current volume
//			std::vector<EMB *> lstEmb;
//
//			//get a marker
//			DartMarker m(the_map);
//
//			//all the darts from a vertex that can generate a tetra (3 adjacent faces)
//			std::vector<Dart> allowTetra;
//
//			//all the darts that are not in otherTetra
//			std::vector<Dart> otherTetra;
//
//			//for each dart of the volume
//			for (typename std::vector<Dart>::iterator it = vStore.begin() ; it != vStore.end() ; ++it )
//			{
//				Dart e = *it;
//				//if the vertex is not treated
//				if (!m.isMarked(e))
//				{
//					//store the embedding
//					lstEmb.push_back(reinterpret_cast<EMB*>(the_map.getVertexEmb(e)));
//					Dart ee=e;
//
//					//count the number of adjacent faces and mark the darts
//					int nbe=0;
//					do
//					{
//						nbe++;
//						m.markOrbit(DART,e);
//						ee=the_map.phi1(the_map.phi2(ee));
//					}
//					while (ee!=e);
//
//					//if 3 adjacents faces, we can create a tetra on this vertex
//					if (nbe==3)
//						allowTetra.push_back(e);
//					else
//						otherTetra.push_back(e);
//				}
//			}
//
//			//we haven't created a tetra yet
//			bool decoupe=false;
//
//			//if we have vertex that can be base
//			if (allowTetra.size()!=0)
//			{
//				//foreach possible vertex while we haven't done any cut
//				for (typename std::vector<Dart>::iterator it=allowTetra.begin();it!=allowTetra.end() && !decoupe ;++it)
//				{
//					//get the dart
//					Dart s=*it;
//					//store the emb
//					std::vector<EMB*> lstCurEmb;
//					lstCurEmb.push_back(reinterpret_cast<EMB*>(the_map.getVertexEmb(s)));
//					lstCurEmb.push_back(reinterpret_cast<EMB*>(the_map.getVertexEmb(the_map.phi1(s))));
//					lstCurEmb.push_back(reinterpret_cast<EMB*>(the_map.getVertexEmb(the_map.phi_1(s))));
//					lstCurEmb.push_back(reinterpret_cast<EMB*>(the_map.getVertexEmb(the_map.phi_1(the_map.phi2(s)))));
//
//					//store the coords of the point
//					gmtl::Vec3f points[4];
//					for (int i=0;i<4;++i)
//					{
//						points[i] = lstCurEmb[i]->getPosition();
//					}
//
//					//test if the future tetra is well oriented (concave case)
//					if (Geometry::isTetrahedronWellOriented(points,CCW))
//					{
//						//test if we haven't any point inside the future tetra
//						bool isEmpty=true;
//						for (typename std::vector<EMB *>::iterator iter = lstEmb.begin() ; iter != lstEmb.end() && isEmpty ; ++iter)
//						{
//							//we don't test the vertex that composes the new tetra
//							if (std::find(lstCurEmb.begin(),lstCurEmb.end(),*iter)==lstCurEmb.end())
//							{
//								isEmpty = !Geometry::isPointInTetrahedron(points, (*iter)->getPosition(), CCW);
//							}
//						}
//
//						//if no point inside the new tetra
//						if (isEmpty)
//						{
//							//cut the spike to make a tet
//							Dart dRes = the_map.cutSpike(*it);
//							decoupe=true;
//							//and continue with the rest of the volume
//							ret = ret && smartVolumeTetrahedrization<PFP>(the_map,the_map.phi3(dRes),CCW);
//						}
//					}
//				}
//			}
//
//			if (!decoupe)
//			{
//				//foreach other vertex while we haven't done any cut
//				for (typename std::vector<Dart>::iterator it=otherTetra.begin();it!=otherTetra.end() && !decoupe ;++it)
//				{
//					//get the dart
//					Dart s=*it;
//					//store the emb
//					std::vector<EMB*> lstCurEmb;
//					lstCurEmb.push_back(reinterpret_cast<EMB*>(the_map.getVertexEmb(s)));
//					lstCurEmb.push_back(reinterpret_cast<EMB*>(the_map.getVertexEmb(the_map.phi1(s))));
//					lstCurEmb.push_back(reinterpret_cast<EMB*>(the_map.getVertexEmb(the_map.phi_1(s))));
//					lstCurEmb.push_back(reinterpret_cast<EMB*>(the_map.getVertexEmb(the_map.phi_1(the_map.phi2(s)))));
//
//					//store the coords of the point
//					gmtl::Vec3f points[4];
//					for (int i=0;i<4;++i)
//					{
//						points[i] = lstCurEmb[i]->getPosition();
//					}
//
//					//test if the future tetra is well oriented (concave case)
//					if (Geometry::isTetrahedronWellOriented(points,CCW))
//					{
//						//test if we haven't any point inside the future tetra
//						bool isEmpty=true;
//						for (typename std::vector<EMB *>::iterator iter = lstEmb.begin() ; iter != lstEmb.end() && isEmpty ; ++iter)
//						{
//							//we don't test the vertex that composes the new tetra
//							if (std::find(lstCurEmb.begin(),lstCurEmb.end(),*iter)==lstCurEmb.end())
//							{
//								isEmpty = !Geometry::isPointInTetrahedron(points, (*iter)->getPosition(), CCW);
//							}
//						}
//
//						//if no point inside the new tetra
//						if (isEmpty)
//						{
//							//cut the spike to make a tet
//							Dart dRes = extractTetra<PFP>(the_map,*it);
//							decoupe=true;
//							//and continue with the rest of the volume
//							smartVolumeTetrahedrization<PFP>(the_map,the_map.phi3(dRes),CCW);
//						}
//					}
//				}
//			}
//
//			if (!decoupe)
//				ret=false;
//		}
//	}
//	return ret;
//}

Pierre Kraemer's avatar
Pierre Kraemer committed
1088
} // namespace Tetrahedralization
untereiner's avatar
untereiner committed
1089

Pierre Kraemer's avatar
Pierre Kraemer committed
1090
} // namespace Modelisation
Pierre Kraemer's avatar
Pierre Kraemer committed
1091

Pierre Kraemer's avatar
Pierre Kraemer committed
1092
1093
} // namespace Volume

Pierre Kraemer's avatar
Pierre Kraemer committed
1094
} // namespace Algo
Pierre Kraemer's avatar
Pierre Kraemer committed
1095

Pierre Kraemer's avatar
Pierre Kraemer committed
1096
} // namespace CGoGN