tetrahedralization.hpp 39 KB
Newer Older
Pierre Kraemer's avatar
Pierre Kraemer committed
1 2 3
/*******************************************************************************
 * CGoGN: Combinatorial and Geometric modeling with Generic N-dimensional Maps  *
 * version 0.1                                                                  *
4
 * Copyright (C) 2009-2012, IGG Team, LSIIT, University of Strasbourg           *
Pierre Kraemer's avatar
Pierre Kraemer committed
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *                                                                              *
 * This library is free software; you can redistribute it and/or modify it      *
 * under the terms of the GNU Lesser General Public License as published by the *
 * Free Software Foundation; either version 2.1 of the License, or (at your     *
 * option) any later version.                                                   *
 *                                                                              *
 * This library is distributed in the hope that it will be useful, but WITHOUT  *
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or        *
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License  *
 * for more details.                                                            *
 *                                                                              *
 * You should have received a copy of the GNU Lesser General Public License     *
 * along with this library; if not, write to the Free Software Foundation,      *
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301 USA.           *
 *                                                                              *
20
 * Web site: http://cgogn.unistra.fr/                                           *
Pierre Kraemer's avatar
Pierre Kraemer committed
21 22 23 24
 * Contact information: cgogn@unistra.fr                                        *
 *                                                                              *
 *******************************************************************************/

25
#include "Algo/Modelisation/subdivision.h"
26 27
#include "Algo/Modelisation/subdivision3.h"
#include "Topology/generic/traversor/traversor3.h"
untereiner's avatar
untereiner committed
28

29

Pierre Kraemer's avatar
Pierre Kraemer committed
30 31 32 33 34 35
namespace CGoGN
{

namespace Algo
{

36 37 38
namespace Volume
{

Pierre Kraemer's avatar
Pierre Kraemer committed
39 40 41
namespace Modelisation
{

untereiner's avatar
untereiner committed
42
namespace Tetrahedralization
Pierre Kraemer's avatar
Pierre Kraemer committed
43
{
untereiner's avatar
untereiner committed
44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
template<typename PFP>
bool EarTriangulation<PFP>::inTriangle(const typename PFP::VEC3& P, const typename PFP::VEC3& normal, const typename PFP::VEC3& Ta,  const typename PFP::VEC3& Tb, const typename PFP::VEC3& Tc)
{
	typedef typename PFP::VEC3 VECT ;
	typedef typename VECT::DATA_TYPE T ;

	if (Geom::tripleProduct(P-Ta, (Tb-Ta), normal) >= T(0))
		return false;

	if (Geom::tripleProduct(P-Tb, (Tc-Tb), normal) >= T(0))
		return false;

	if (Geom::tripleProduct(P-Tc, (Ta-Tc), normal) >= T(0))
		return false;

	return true;
}

template<typename PFP>
void EarTriangulation<PFP>::recompute2Ears( Dart d, const typename PFP::VEC3& normalPoly, bool convex)
{
	Dart d2 = m_map.phi_1(d);
	Dart d_p = m_map.phi_1(d2);
	Dart d_n = m_map.phi1(d);

	const typename PFP::VEC3& Ta = m_position[d2];
	const typename PFP::VEC3& Tb = m_position[d];
	const typename PFP::VEC3& Tc = m_position[d_p];
	const typename PFP::VEC3& Td = m_position[d_n];

	// compute angle
	typename PFP::VEC3 v1= Tb - Ta;
	typename PFP::VEC3 v2= Tc - Ta;
	typename PFP::VEC3 v3= Td - Tb;

	v1.normalize();
	v2.normalize();
	v3.normalize();

//	float dotpr1 = 1.0f - (v1*v2);
//	float dotpr2 = 1.0f + (v1*v3);
	float dotpr1 = acos(v1*v2) / (M_PI/2.0f);
	float dotpr2 = acos(-(v1*v3)) / (M_PI/2.0f);

	if (!convex)	// if convex no need to test if vertex is an ear (yes)
	{
		typename PFP::VEC3 nv1 = v1^v2;
		typename PFP::VEC3 nv2 = v1^v3;

		if (nv1*normalPoly < 0.0)
			dotpr1 = 10.0f - dotpr1;// not an ears  (concave)
		if (nv2*normalPoly < 0.0)
			dotpr2 = 10.0f - dotpr2;// not an ears  (concave)

		bool finished = (dotpr1>=5.0f) && (dotpr2>=5.0f);
		for (typename VPMS::reverse_iterator it = m_ears.rbegin(); (!finished)&&(it != m_ears.rend())&&(it->angle > 5.0f); ++it)
		{
			Dart dx = it->dart;
			const typename PFP::VEC3& P = m_position[dx];

			if ((dotpr1 < 5.0f) && (d != d_p))
				if (inTriangle(P, normalPoly,Tb,Tc,Ta))
					dotpr1 = 5.0f;// not an ears !

			if ((dotpr2 < 5.0f) && (d != d_n) )
				if (inTriangle(P, normalPoly,Td,Ta,Tb))
					dotpr2 = 5.0f;// not an ears !

			finished = ((dotpr1 >= 5.0f)&&(dotpr2 >= 5.0f));
		}
	}

	float length = (Tb-Tc).norm2();
	m_dartEars[d2] = m_ears.insert(VertexPoly(d2,dotpr1,length));

	length = (Td-Ta).norm2();
	m_dartEars[d] = m_ears.insert(VertexPoly(d,dotpr2,length));
}

template<typename PFP>
float EarTriangulation<PFP>::computeEarInit(Dart d, const typename PFP::VEC3& normalPoly, float& val)
{
	Dart e =  m_map.phi1(d);
	Dart f =  m_map.phi1(e);

	const typename PFP::VEC3& Ta = m_position[e];
	const typename PFP::VEC3& Tb = m_position[f];
	const typename PFP::VEC3& Tc = m_position[d];

	typename PFP::VEC3 v1 = Tc-Ta;
	typename PFP::VEC3 v2 = Tb-Ta;
	v1.normalize();
	v2.normalize();

//	val = 1.0f - (v1*v2);
	val = acos(v1*v2) / (M_PI/2.0f);

	typename PFP::VEC3 vn = v1^v2;
	if (vn*normalPoly > 0.0f)
		val = 10.0f - val; 		// not an ears  (concave, store at the end for optimized use for intersections)

	if (val>5.0f)
		return 0.0f;

	//INTERSECTION
	f =  m_map.phi1(f);
	while (f != d)
	{
		if (inTriangle(m_position[f], normalPoly,Tb,Tc,Ta))
		{
			val = 5.0f;
			return 0.0f;
		}
		f =  m_map.phi1(f);
	}

	return (Tb-Tc).norm2();
}

template<typename PFP>
//void EarTriangulation<PFP>::trianguleFace(Dart d, DartMarker& mark)
void EarTriangulation<PFP>::trianguleFace(Dart d)
{
	// compute normal to polygon
	typename PFP::VEC3 normalPoly = Algo::Surface::Geometry::newellNormal<PFP>(m_map, d, m_position);

	// first pass create polygon in chained list witht angle computation
	unsigned int nbv = 0;
	unsigned int nbe = 0;
	Dart a = d;

	if (m_map.template phi<111>(d) ==d)
	{
//		mark.markOrbit<FACE>(d);	// mark the face
		return;
	}

	do
	{
		float val;
		float length = computeEarInit(a,normalPoly,val);
		a = m_map.phi1(a);	// phi here because ears is next of a
		m_dartEars[a] = m_ears.insert(VertexPoly(a,val,length));
		if (length!=0)
			nbe++;
		nbv++;
	}while (a!=d);

	// NO WE HAVE THE POLYGON AND EARS
	// LET'S REMOVE THEM

	bool convex = nbe==nbv;

	while (nbv>3)
	{
		// take best (and valid!) ear
		typename VPMS::iterator be_it = m_ears.begin(); // best ear
		Dart d_e = be_it->dart;
		Dart e1 = m_map.phi1(d_e);
		Dart e2 = m_map.phi_1(d_e);

		m_map.splitFace(e1,e2);

		Dart d_1 = m_map.phi_1(e1);
		std::vector<Dart> edges;
		edges.push_back(d_1);
		edges.push_back(m_map.phi1(m_map.phi2(m_map.phi1(d_1))));
		edges.push_back(m_map.phi_1(m_map.phi2(m_map.phi_1(d_1))));
		m_map.splitVolume(edges);

		d_1 = m_map.phi3(m_map.phi_1(e1));
		edges.clear();
		edges.push_back(d_1);
		edges.push_back(m_map.phi1(m_map.phi2(m_map.phi1(d_1))));
		edges.push_back(m_map.phi_1(m_map.phi2(m_map.phi_1(d_1))));
		m_map.splitVolume(edges);

		m_resTets.push_back(d_e);
		m_resTets.push_back(m_map.phi3(d_e));

//		mark.markOrbit<FACE>(d_e);
		nbv--;

		if (nbv>3)	// do not recompute if only one triangle left
		{
			//remove ears and two sided ears

			m_ears.erase(be_it);					// from map of ears
			m_ears.erase(m_dartEars[e1]);
			m_ears.erase(m_dartEars[e2]);

			recompute2Ears(e1,normalPoly,convex);

			convex = (m_ears.rbegin()->angle) < 5.0f;
		}
		else
		{
			m_resTets.push_back(e1);
			m_resTets.push_back(m_map.phi3(e1));
		}
//		else
//			mark.markOrbit<FACE>(e1);	// mark last face
	}
	m_ears.clear();
}

template<typename PFP>
Sylvain Thery's avatar
Sylvain Thery committed
252
void EarTriangulation<PFP>::triangule()
253
{
Sylvain Thery's avatar
Sylvain Thery committed
254
//	DartMarker m(m_map);
255 256 257 258 259 260 261 262 263 264 265 266
//
//	for(Dart d = m_map.begin(); d != m_map.end(); m_map.next(d))
//	{
//		if(!m.isMarked(d))
//		{
//			Dart e = m_map.template phi<111>(d);
//			if (e!=d)
//				trianguleFace(d, m);
//		}
//	}
//	m.unmarkAll();

Sylvain Thery's avatar
Sylvain Thery committed
267
	TraversorF<typename PFP::MAP> trav(m_map);
268 269 270 271 272 273 274 275 276

	for(Dart d = trav.begin(); d != trav.end(); d = trav.next())
	{
		Dart e = m_map.template phi<111>(d);
		if (e!=d)
			trianguleFace(d);
	}
}

277 278 279 280 281 282 283
//template <typename PFP>
//void hexahedronToTetrahedron(typename PFP::MAP& map, Dart d)
//{
//	Dart d1 = d;
//	Dart d2 = map.phi1(map.phi1(d));
//	Dart d3 = map.phi_1(map.phi2(d));
//	Dart d4 = map.phi1(map.phi1(map.phi2(map.phi_1(d3))));
284
//
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
//	Algo::Modelisation::cut3Ear<PFP>(map,d1);
//	Algo::Modelisation::cut3Ear<PFP>(map,d2);
//	Algo::Modelisation::cut3Ear<PFP>(map,d3);
//	Algo::Modelisation::cut3Ear<PFP>(map,d4);
//}
//
//template <typename PFP>
//void hexahedronsToTetrahedrons(typename PFP::MAP& map)
//{
//    TraversorV<typename PFP::MAP> tv(map);
//
//    //for each vertex
//    for(Dart d = tv.begin() ; d != tv.end() ; d = tv.next())
//    {
//        bool vertToTet=true;
//        std::vector<Dart> dov;
//        dov.reserve(32);
//        FunctorStore fs(dov);
//        map.foreach_dart_of_vertex(d,fs);
//        CellMarkerStore<VOLUME> cmv(map);
//
//        //check if all vertices degree is equal to 3 (= no direct adjacent vertex has been split)
//        for(std::vector<Dart>::iterator it=dov.begin();vertToTet && it!=dov.end();++it)
//        {
Lionel Untereiner's avatar
Lionel Untereiner committed
309
//            if(!cmv.isMarked(*it) && !map.isBoundaryMarked(3,*it))
310 311 312 313 314 315 316 317 318 319 320
//            {
//                cmv.mark(*it);
//                vertToTet = (map.phi1(map.phi2(map.phi1(map.phi2(map.phi1(map.phi2(*it))))))==*it); //degree = 3
//            }
//        }
//
//        //if ok : create tetrahedrons around the vertex
//        if(vertToTet)
//        {
//            for(std::vector<Dart>::iterator it=dov.begin();it!=dov.end();++it)
//            {
Lionel Untereiner's avatar
Lionel Untereiner committed
321
//                if(cmv.isMarked(*it) && !map.isBoundaryMarked(3,*it))
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
//                {
//                    cmv.unmark(*it);
//                    cut3Ear<PFP>(map,*it);
//                }
//            }
//        }
//    }
//}
//
//template <typename PFP>
//void tetrahedrizeVolume(typename PFP::MAP& map, VertexAttribute<typename PFP::VEC3>& position)
//{
//	//mark bad edges
//	DartMarkerStore mBadEdge(map);
//
//	std::vector<Dart> vEdge;
//	vEdge.reserve(1024);
//
////	unsignzed int i = 0;
//
//	unsigned int nbEdges = map.template getNbOrbits<EDGE>();
//	unsigned int i = 0;
//
//	for(Dart dit = map.begin() ; dit != map.end() ; map.next(dit))
//	{
//		//check if this edge is an "ear-edge"
//		if(!mBadEdge.isMarked(dit))
//		{
//			++i;
//			std::cout << i << " / " << nbEdges << std::endl;
//
//			//search three positions
//			typename PFP::VEC3 tris1[3];
//			tris1[0] = position[dit];
//			tris1[1] = position[map.phi_1(dit)];
//			tris1[2] = position[map.phi_1(map.phi2(dit))];
//
//			//search if the triangle formed by these three points intersect the rest of the mesh (intersection triangle/triangle)
//			TraversorF<typename PFP::MAP> travF(map);
//			for(Dart ditF = travF.begin() ; ditF != travF.end() ; ditF = travF.next())
//			{
//				//get vertices position
//				typename PFP::VEC3 tris2[3];
//				tris2[0] = position[ditF];
//				tris2[1] = position[map.phi1(ditF)];
//				tris2[2] = position[map.phi_1(ditF)];
//
//				bool intersection = false;
//
//				for (unsigned int i = 0; i < 3 && !intersection; ++i)
//				{
//					typename PFP::VEC3 inter;
//					intersection = Geom::intersectionSegmentTriangle(tris1[i], tris1[(i+1)%3], tris2[0], tris2[1], tris2[2], inter);
//				}
//
//				if(!intersection)
//				{
//					for (unsigned int i = 0; i < 3 && !intersection; ++i)
//					{
//						typename PFP::VEC3 inter;
//						intersection = Geom::intersectionSegmentTriangle(tris2[i], tris2[(i+1)%3], tris1[0], tris1[1], tris1[2], inter);
//					}
//				}
//
//				//std::cout << "intersection ? " << (intersection ? "true" : "false") << std::endl;
//
//				if(intersection)
//				{
//					mBadEdge.markOrbit<EDGE>(dit);
//				}
//				else //cut a tetrahedron
//				{
//					vEdge.push_back(dit);
//				}
//
//
////
////				if(i == 16)
////					return;
//			}
//		}
//	}
//
//	std::cout << "nb edges to split = " << vEdge.size() << std::endl;
//	i = 0;
//	for(std::vector<Dart>::iterator it = vEdge.begin() ; it != vEdge.end() ; ++it)
//	{
//		++i;
//		std::cout << i << " / " << vEdge.size() << std::endl;
//
//		Dart dit = *it;
//
//		//std::cout << "cut cut " << std::endl;
//		std::vector<Dart> vPath;
//
//		vPath.push_back(map.phi1(dit));
//		vPath.push_back(map.phi1(map.phi2(map.phi_1(dit))));
//		vPath.push_back(map.phi_1(map.phi2(dit)));
//
//		map.splitVolume(vPath);
//
//		map.splitFace(map.phi2(map.phi1(dit)), map.phi2(map.phi1(map.phi2(dit))));
//	}
//
//	std::cout << "finished " << std::endl;
//}
428

untereiner's avatar
untereiner committed
429

430
/************************************************************************************************
431 432
 * 									Collapse / Split Operators
 ************************************************************************************************/
Pierre Kraemer's avatar
Pierre Kraemer committed
433

434 435 436
template <typename PFP>
Dart splitVertex(typename PFP::MAP& map, std::vector<Dart>& vd)
{
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
    //split the vertex
    Dart dres = map.splitVertex(vd);

    //split the faces incident to the new vertex
    Dart dbegin = map.phi1(map.phi2(vd.front()));
    Dart dit = dbegin;
    do
    {
        map.splitFace(map.phi1(dit),map.phi_1(dit));
        dit = map.alpha2(dit);
    }
    while(dbegin != dit);

    //split the volumes incident to the new vertex
    for(unsigned int i = 0; i < vd.size(); ++i)
    {
        Dart dit = vd[i];

        std::vector<Dart> v;
        v.push_back(map.phi1(map.phi1(map.phi2(dit))));
        std::cout << "[" << v.back();
        v.push_back(map.phi1(dit));
        std::cout << " - " << v.back();
        v.push_back(map.phi1(map.phi2(map.phi_1(dit))));
        std::cout << " - " << v.back() << "]" << std::endl;
        map.splitVolume(v);
    }

    return dres;
466 467
}

468 469 470
/*************************************************************************************************
 *		 								Tetrahedron functions									 *
 *************************************************************************************************/
Pierre Kraemer's avatar
Pierre Kraemer committed
471 472

template <typename PFP>
Sylvain Thery's avatar
Sylvain Thery committed
473
bool isTetrahedron(typename PFP::MAP& map, Vol v)
Pierre Kraemer's avatar
Pierre Kraemer committed
474
{
475 476 477
    unsigned int nbFaces = 0;

    //Test the number of faces end its valency
Sylvain Thery's avatar
Sylvain Thery committed
478
	Traversor3WF<typename PFP::MAP> travWF(map, v, false);
479 480 481 482 483 484 485 486
    for(Dart dit = travWF.begin() ; dit != travWF.end(); dit = travWF.next())
    {
        //increase the number of faces
        nbFaces++;
        if(nbFaces > 4)	//too much faces
            return false;

        //test the valency of this face
487
		if(!map.isCycleTriangle(dit))
488 489 490 491
            return false;
    }

    return true;
Pierre Kraemer's avatar
Pierre Kraemer committed
492 493
}

494
template <typename PFP>
495
bool isTetrahedralization(typename PFP::MAP& map)
496
{
497 498 499 500 501 502 503 504
    TraversorW<typename PFP::MAP> travW(map);
    for(Dart dit = travW.begin() ; dit != travW.end() ; dit = travW.next())
    {
        if(!isTetrahedron<PFP>(map, dit))
            return false;
    }

    return true;
505 506
}

507 508 509
/***********************************************************************************************
 * 										swap functions										   *
 ***********************************************************************************************/
Pierre Kraemer's avatar
Pierre Kraemer committed
510

511
template <typename PFP>
512
Dart swap2To2(typename PFP::MAP& map, Dart d)
513
{
514
    std::vector<Dart> edges;
515

516 517 518 519
    Dart d2_1 = map.phi_1(map.phi2(d));
    map.mergeVolumes(d);
    map.mergeFaces(map.phi1(d2_1));
    map.splitFace(d2_1, map.phi1(map.phi1(d2_1)));
520

521 522 523 524 525 526 527 528
        Dart stop = map.phi_1(d2_1);
        Dart dit = stop;
        do
        {
            edges.push_back(dit);
            dit = map.phi1(map.phi2(map.phi1(dit)));
        }
        while(dit != stop);
529

530
        map.splitVolume(edges);
Pierre Kraemer's avatar
Pierre Kraemer committed
531

532
    return map.phi2(stop);
Pierre Kraemer's avatar
Pierre Kraemer committed
533 534 535
}

template <typename PFP>
536
Dart swap4To4(typename PFP::MAP& map, Dart d)
Pierre Kraemer's avatar
Pierre Kraemer committed
537
{
538 539
    Dart e = map.phi2(map.phi3(d));
    Dart dd = map.phi2(d);
Pierre Kraemer's avatar
Pierre Kraemer committed
540

541 542 543
    //unsew middle crossing darts
    map.unsewVolumes(d);
    map.unsewVolumes(map.phi2(map.phi3(dd)));
Pierre Kraemer's avatar
Pierre Kraemer committed
544

545 546
    Dart d1 = Tetrahedralization::swap2To2<PFP>(map, dd);
    Dart d2 = Tetrahedralization::swap2To2<PFP>(map, e);
Pierre Kraemer's avatar
Pierre Kraemer committed
547

548 549 550
    //sew middle darts so that they do not cross
    map.sewVolumes(map.phi2(d1),map.phi2(map.phi3(d2)));
    map.sewVolumes(map.phi2(map.phi3(d1)),map.phi2(d2));
551
	return d1;
Pierre Kraemer's avatar
Pierre Kraemer committed
552 553 554
}

template <typename PFP>
555
Dart swap3To2(typename PFP::MAP& map, Dart d)
Pierre Kraemer's avatar
Pierre Kraemer committed
556
{
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
    std::vector<Dart> edges;

    Dart stop = map.phi_1(map.phi2(map.phi1(d)));
    Dart d2 = map.phi2(d);
    Dart d21 = map.phi1(d2);
    map.mergeVolumes(d);
    map.mergeFaces(d2);
    map.mergeVolumes(d21);

    Dart dit = stop;
    do
    {
        edges.push_back(dit);
        dit = map.phi1(map.phi2(map.phi1(dit)));
    }
    while(dit != stop);
    map.splitVolume(edges);

575
	return map.phi2(edges[0]);
Pierre Kraemer's avatar
Pierre Kraemer committed
576 577 578
}

//[precond] le brin doit venir d'une face partagé par 2 tetraèdres
579
// renvoie un brin de la nouvelle orbite arete creee
Pierre Kraemer's avatar
Pierre Kraemer committed
580
template <typename PFP>
581
Dart swap2To3(typename PFP::MAP& map, Dart d)
Pierre Kraemer's avatar
Pierre Kraemer committed
582
{
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
    std::vector<Dart> edges;

    Dart d2_1 = map.phi_1(map.phi2(d));
    map.mergeVolumes(d);

    //
    // Cut the 1st tetrahedron
    //
    Dart stop = d2_1;
    Dart dit = stop;
    do
    {
        edges.push_back(dit);
        dit = map.phi1(map.phi2(map.phi1(dit)));
    }
    while(dit != stop);

    map.splitVolume(edges);
    map.splitFace(map.alpha2(edges[0]), map.alpha2(edges[2]));

    //
    // Cut the 2nd tetrahedron
    //
    edges.clear();
    stop = map.phi1(map.phi2(d2_1));
    dit = stop;
    do
    {
        edges.push_back(dit);
        dit = map.phi1(map.phi2(map.phi1(dit)));
    }
    while(dit != stop);
    map.splitVolume(edges);

617
	return stop;
618
}
untereiner's avatar
untereiner committed
619

620 621 622
template <typename PFP>
Dart swap5To4(typename PFP::MAP& map, Dart d)
{
623 624
    Dart t1 = map.phi3(d);
    Dart t2 = map.phi3(map.phi2(d));
untereiner's avatar
untereiner committed
625

626 627
    Dart d323 = map.phi_1(map.phi2(map.phi1(d)));
    Dart dswap = map.phi2(map.phi3(d323));
untereiner's avatar
untereiner committed
628

629 630 631 632 633
    map.unsewVolumes(t1);
    map.unsewVolumes(t2);
    map.unsewVolumes(d323);
    map.unsewVolumes(map.phi2(d323));
    map.deleteVolume(d);
untereiner's avatar
untereiner committed
634

635
    Dart d1 = Tetrahedralization::swap2To2<PFP>(map, dswap);
untereiner's avatar
untereiner committed
636

637 638
    map.sewVolumes(map.phi2(d1), t1);
    map.sewVolumes(map.phi2(map.phi3(d1)),t2);
untereiner's avatar
untereiner committed
639

640
    return t1;
641
}
untereiner's avatar
untereiner committed
642

643
template <typename PFP>
644
Dart swapGen3To2(typename PFP::MAP& map, Dart d)
645
{
646
	Dart stop = map.phi1(map.phi2(map.phi_1(d)));
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
	if(map.deleteEdge(d) == NIL)
	{
		std::cout << "boundary" << std::endl;

		std::vector<Dart> edges;
		Dart dbegin = map.findBoundaryFaceOfEdge(d);
		Traversor3EW<typename PFP::MAP> t(map, d);
		for(Dart dit = t.begin() ; dit != t.end() ; dit = t.next())
			edges.push_back(dit);

		for(unsigned int i = 0 ; i < edges.size() ; ++i)
			map.mergeVolumes(edges[i]);

		Dart d  = dbegin;
		Dart e = map.phi2(d);
		map.flipBackEdge(d);
		map.template copyDartEmbedding<VERTEX>(d, map.phi1(e)) ;
		map.template copyDartEmbedding<VERTEX>(e, map.phi1(d)) ;

		d  = map.phi3(dbegin);
		e = map.phi2(d);
		map.flipEdge(d);
		map.template copyDartEmbedding<VERTEX>(d, map.phi1(e)) ;
		map.template copyDartEmbedding<VERTEX>(e, map.phi1(d)) ;
	}
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711

	std::vector<Dart> edges;
	Dart dit = stop;
	do
	{
		edges.push_back(dit);
		dit = map.phi1(map.phi2(map.phi1(dit)));
	}
	while(dit != stop);
	map.splitVolume(edges);

	Dart v = map.phi1(map.phi2(stop));
	dit = map.phi_1(map.phi_1(v));
	do
	{
		Dart save = map.phi_1(dit);
		map.splitFace(v,dit);

		//decoupe des tetraedres d'un cote du plan
		Dart d_1 = map.phi_1(v);
		std::vector<Dart> edges;
		edges.push_back(d_1);
		edges.push_back(map.phi1(map.phi2(map.phi1(d_1))));
		edges.push_back(map.phi_1(map.phi2(map.phi_1(d_1))));
		map.splitVolume(edges);

		//decoupe des tetraedres d'un cote du plan
		d_1 = map.phi3(map.phi_1(v));
		edges.clear();
		edges.push_back(d_1);
		edges.push_back(map.phi1(map.phi2(map.phi1(d_1))));
		edges.push_back(map.phi_1(map.phi2(map.phi_1(d_1))));
		map.splitVolume(edges);

		dit = save;
	}
	while(map.phi_1(dit) != v);

	return stop;
}
712 713 714 715 716

template <typename PFP>
std::vector<Dart> swapGen3To2Optimized(typename PFP::MAP& map, Dart d)
{
	Dart stop = map.phi1(map.phi2(map.phi_1(d)));
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
	if(map.deleteEdge(d) == NIL)
	{
		std::cout << "boundary" << std::endl;

		std::vector<Dart> edges;
		Dart dbegin = map.findBoundaryFaceOfEdge(d);
		Traversor3EW<typename PFP::MAP> t(map, d);
		for(Dart dit = t.begin() ; dit != t.end() ; dit = t.next())
			edges.push_back(dit);

		for(unsigned int i = 0 ; i < edges.size() ; ++i)
			map.mergeVolumes(edges[i]);

		Dart d  = dbegin;
		Dart e = map.phi2(d);
		map.flipBackEdge(d);
		map.template copyDartEmbedding<VERTEX>(d, map.phi1(e)) ;
		map.template copyDartEmbedding<VERTEX>(e, map.phi1(d)) ;

		d  = map.phi3(dbegin);
		e = map.phi2(d);
		map.flipEdge(d);
		map.template copyDartEmbedding<VERTEX>(d, map.phi1(e)) ;
		map.template copyDartEmbedding<VERTEX>(e, map.phi1(d)) ;
	}
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758

	std::vector<Dart> edges;
	Dart dit = stop;
	do
	{
		edges.push_back(dit);
		dit = map.phi1(map.phi2(map.phi1(dit)));
	}
	while(dit != stop);
	map.splitVolume(edges);

	Tetrahedralization::EarTriangulation<PFP> triangulation(map);
	triangulation.trianguleFace(map.phi1(map.phi2(stop)));

	return triangulation.getResultingTets();
}

759
//unsigned int n = map.edgeDegree(d);
760

761 762 763 764 765 766 767 768 769
//    if(n >= 4)
//    {
//        Dart dit = d;
//        for(unsigned int i = 0 ; i < n - 4 ; ++i)
//        {
//            dit = map.phi2(Tetrahedralization::swap2To3<PFP>(map, dit));
//        }
//        Tetrahedralization::swap4To4<PFP>(map,  map.alpha2(dit));
//    }
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799

//	if(n >= 4)
//	{
//		Dart dit = d;
//		if(map.isBoundaryEdge(dit))
//		{
//			for(unsigned int i = 0 ; i < n - 2 ; ++i)
//			{
//				dit = map.phi2(Tetrahedralization::swap2To3<PFP>(map, dit));
//			}
//			Tetrahedralization::swap2To2<PFP>(map, dit);
//		}
//		else
//		{
//			for(unsigned int i = 0 ; i < n - 4 ; ++i)
//			{
//				dit = map.phi2(Tetrahedralization::swap2To3<PFP>(map, dit));
//			}
//			Tetrahedralization::swap4To4<PFP>(map,  map.alpha2(dit));
//		}
//	}
//	else if (n == 3)
//	{
//		Dart dres = Tetrahedralization::swap2To3<PFP>(map, d);
//		Tetrahedralization::swap2To2<PFP>(map, map.phi2(dres));
//	}
//	else // si (n == 2)
//	{
//		Tetrahedralization::swap2To2<PFP>(map, d);
//	}
800 801 802 803

template <typename PFP>
void swapGen2To3(typename PFP::MAP& map, Dart d)
{
804
//	unsigned int n = map.edgeDegree(d);
805

806
//- a single 2-3 swap, followed by n − 3 3-2 swaps, or
807
//- a single 4-4 swap, followed by n − 4 3-2 swaps.
808 809
}

810 811 812
/************************************************************************************************
 *										Flip Functions 											*
 ************************************************************************************************/
untereiner's avatar
untereiner committed
813

814
template <typename PFP>
815
Dart flip1To4(typename PFP::MAP& map, Dart d)
816
{
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
    std::vector<Dart> edges;

    //
    // Cut the 1st tetrahedron
    //
    edges.push_back(map.phi2(d));
    edges.push_back(map.phi2(map.phi1(d)));
    edges.push_back(map.phi2(map.phi_1(d)));
    map.splitVolume(edges);

    Dart x = Surface::Modelisation::trianguleFace<PFP>(map,map.phi2(d));

    //
    // Cut the 2nd tetrahedron
    //
    Dart dit = map.phi2(map.phi3(x));
    edges.clear();
    edges.push_back(dit);
    dit = map.phi1(map.phi2(map.phi1(dit)));
    edges.push_back(dit);
    dit = map.phi1(dit);
    edges.push_back(dit);
    dit = map.phi1(map.phi2(map.phi1(dit)));
    edges.push_back(dit);

    map.splitVolume(edges);
    map.splitFace(map.phi1(map.phi2(edges[0])),map.phi1(map.phi2(edges[2])));

    //
    // Cut the 3rd tetrahedron
    //
    dit = map.phi3(map.phi1(map.phi2(edges[0])));
    edges.clear();
    edges.push_back(dit);
    dit = map.phi1(map.phi2(map.phi1(dit)));
    edges.push_back(dit);
    dit = map.phi1(map.phi2(map.phi1(dit)));
    edges.push_back(dit);

    map.splitVolume(edges);

    return x;
859 860
}

861
template <typename PFP>
862
Dart flip1To3(typename PFP::MAP& map, Dart d)
863
{
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
    std::vector<Dart> edges;

    //
    // Triangule one face
    //
    Dart x = Surface::Modelisation::trianguleFace<PFP>(map,d);

    //
    // Cut the 1st Tetrahedron
    //
    Dart dit = x;
    edges.push_back(dit);
    dit = map.phi1(map.phi2(map.phi1(dit)));
    edges.push_back(dit);
    dit = map.phi1(map.phi2(map.phi1(dit)));
    edges.push_back(dit);
    dit = map.phi1(map.phi2(map.phi1(dit)));
    edges.push_back(dit);

    map.splitVolume(edges);

    // Cut the 2nd Tetrahedron
    map.splitFace(map.phi1(map.phi2(edges[0])),map.phi1(map.phi2(edges[2])));

    // Cut the 3rd Tetrahedron
    dit = map.phi1(map.phi2(edges[0]));
    edges.clear();
    edges.push_back(dit);
    dit = map.phi1(map.phi2(map.phi1(dit)));
    edges.push_back(dit);
    dit = map.phi1(map.phi2(map.phi1(dit)));
    edges.push_back(dit);

    map.splitVolume(edges);

    return x;
900
}
untereiner's avatar
untereiner committed
901

902
/************************************************************************************************
903
 *                				 Bisection Functions                                            *
904
 ************************************************************************************************/
Pierre Kraemer's avatar
Pierre Kraemer committed
905

906
template <typename PFP>
907
Dart edgeBisection(typename PFP::MAP& map, Dart d)
908
{
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
    //coupe l'arete en 2
    map.cutEdge(d);
    Dart e = map.phi1(d);

    Dart dit = e;
    do
    {
        map.splitFace(dit, map.phi1(map.phi1(dit)));
        dit = map.alpha2(dit);
    }
    while(dit != e);

    dit = e;
    std::vector<Dart> edges;
    do
    {
untereiner's avatar
untereiner committed
925
		if(!map.isBoundaryMarked(3,dit))
926 927 928 929 930 931 932 933 934 935 936 937
        {
            edges.push_back(map.phi_1(dit));
            edges.push_back(map.phi_1(map.phi2(map.phi_1(edges[0]))));
            edges.push_back(map.phi1(map.phi2(dit)));
            map.splitVolume(edges);
            edges.clear();
        }
        dit = map.alpha2(dit);
    }
    while(dit != e);

    return e;
Pierre Kraemer's avatar
Pierre Kraemer committed
938
}
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

//namespace Tetgen
//{


//template <typename PFP>
//bool tetrahedralize(const typename PFP::MAP2& map2, const VertexAttribute<typename PFP::VEC3> position2,
//                    typename PFP::MAP3& map3, VertexAttribute<typename PFP::VEC3> position3,
//                    bool add_steiner_points_on_exterior_boundary, bool add_steiner_points_on_interior_boundary, double max_volume, double max_shape)
//{
//    //
//    // 1. map to tetgen
//    //

//    tetgenio surface;

//    // memory initialization
//    surface.initialize();

//    // 0-based indexing
//    surface.firstnumber = 0;

//    // input vertices
//    surface.numberofpoints = map2.nbOrbits<VERTEX>();
//    surface.pointlist = new REAL[surface.numberofpoints * 3];

//    //for each vertex
//    unsigned int i = 0;
//    TraversorV tv(map2);
//    for(Dart it = tv.begin() ; it != tv.end() ; it = tv.next())
//    {
//        surface.pointlist[i] = position2[it][0] ; i++ ; //x
//        surface.pointlist[i] = position2[it][1] ; i++ ; //y
//        surface.pointlist[i] = position2[it][2] ; i++ ; //z
//    }

//    tetgenio::facet* f ;
//    tetgenio::polygon* p ;
//    surface.numberoffacets = map2.nbOrbits<FACE>();
//    surface.facetlist = new tetgenio::facet[surface.numberoffacets] ;


//    //for each facet
//    i = 0;
//    TraversorF tf(map2);
//    for(Dart it = tf.begin() ; it != tf.end() ; it = tf.next())
//    {
//        f = &(surface.facetlist[i]) ;
//        f->numberofpolygons = 1 ;
//        f->polygonlist = new tetgenio::polygon[f->numberofpolygons] ;
//        p = f->polygonlist ;
//        p->numberofvertices = map2.faceDegree(it);
//        p->vertexlist = new int[p->numberofvertices] ;

//        unsigned int j = 0;
//        Dart dit = it;
//        do
//        {
//            p->vertexlist[j] = map2.getEmbedding<VERTEX>(dit);
//            dit = map.phi1(dit);
//            j++;
//        }while(dit != it);

//        f->numberofholes = 0 ;
//        f->holelist = nil ;
//        i++ ;
//    }

//    //
//    // 2. tetgen argument list
//    //
//    std::ostringstream s ;

//    // Q: Quiet: No terminal output except errors
//    // p: PLC : input data is surfacic
//    // n: output tet neighbors

//    // q: desired quality
//    if(max_volume > 0 && max_shape > 0.0)
//    {
//        s << "Qpna" << max_volume << "q"<< max_shape;
//    }
//    else if(max_volume > 0.0)
//    {
//        s << "Qpna" << max_volume ;
//    }
//    else if(max_shape > 0.0)
//    {
//        s << "Qpnq" << max_shape ;
//    }
//    else
//    {
//        s << "Qpn";
//    }

//    // YY: prohibit steiner points on boundaries
//    // (first Y for exterior boundary, second Y for the
//    // other ones).

//    if( add_steiner_points_on_exterior_boundary && !add_steiner_points_on_interior_boundary)
//    {
//       //Invalid combination of flags (do not preserve exterior boundary and preserve interior ones) - preserving exterior boundary as well
//        add_steiner_points_on_exterior_boundary = false ;
//    }

//    if(!add_steiner_points_on_exterior_boundary)
//    {
//        s << "Y" ;
//    }

//    if(!add_steiner_points_on_interior_boundary)
//    {
//        s << "Y" ;
//    }
//    std::string params = s.str() ;

//    //
//    // 3. tetrahedralization
//    //
//    tetgenio volume;
//    ::tetrahedralize(params.c_str(), &surface, &volume) ;


//    //
//    // 4. tetgen to map
//    //

//    //create vertices
//    double* p = volume.pointlist ;
//    std::vector<unsigned int> verticesID;
//    verticesID.reserve(volume.numberofpoints);
//    AttributeContainer& container = map3.template getAttributeContainer<VERTEX>() ;

//    for(unsigned int i = 0; i < volume.numberofpoints; i++)
//    {
//        typename PFP::VEC3 pos(p[0], p[1], p[2]);
//        unsigned int id = container.insertLine();

//        position3[id] = pos;
//        verticesID.push_back(id);

//        p += 3 ;
//    }

//    //create tetrahedrons
//    int* t = volume.tetrahedronlist ;
//    for(unsigned int i = 0; i < volume.numberoftetrahedra; i++)
//    {
//        Dart d = Algo::Surface::Modelisation::createTetrahedron<PFP>(map3, false);

//        for(unsigned int j = 0; j < 3; j++)
//        {
//            FunctorSetEmb<typename PFP::MAP, VERTEX> fsetemb(map, verticesID[t[j] - volume.firstnumber]);
//            map.template foreach_dart_of_orbit<PFP::MAP::VERTEX_OF_PARENT>(d, fsetemb);

////            //store darts per vertices to optimize reconstruction
////            Dart dd = d;
////            do
////            {
////                m.mark(dd) ;
////                vecDartsPerVertex[pt[2-j]].push_back(dd);
////                dd = map.phi1(map.phi2(dd));
////            } while(dd != d);

//            d = map.phi1(d);

//            set_cell_vertex(d, j, verticesID[t[j] - volume.firstnumber]) ;
//        }

//        t += 4 ;
//    }

//    //create adjacency
//    int* pn = volume.neighborlist ;
//    for(unsigned int i = 0; i < volume.numberoftetrahedra; i++)
//    {
//        for(int j=0; j<4; j++)
//        {
//            int adjacent = pn[j] ;

//            if(adjacent >= 0)
//            {
//                set_cell_adjacent( cells[i], j, cells[adjacent - volume.firstnumber]
//                ) ;
//            }
//        }
//        pn += 4 ;
//    }
//}

///**
// * generate tetrahedra based on an surface mesh object
// */
//template <typename PFP>
//bool process(const std::string& filename, typename PFP::MAP3& map3, bool add_steiner_points_on_exterior_boundary,
//             bool add_steiner_points_on_interior_boundary, double max_volume, double max_shape)
//{

//}



///**
// * generate tetrahedra based on an surface mesh object
// * -INT_MAX for surf/vol-id inherits from the mesh
// */
//template <typename PFP2, typename PFP3>
//typename PFP3::MAP process(typename PFP2::MAP& map, double volume, double quality, int volid = -INT_MAX, int surfid = -INT_MAX)
//{
//    //
//    // map to tetgen
//    //


//    tetgenio surface;
//    tetgenio::facet *f;
//    tetgenio::polygon *p;
//    int *elements, *surfaces;
//    int i, j, n, *ele, *tet;
//    char params [512];


//    // memory initialization
//    surface.initialize();

//    // 0-based indexing
//    surface.firstnumber = 0;

//    // input vertices
//    surface.numberofpoints =
//    surface.pointlist = new REAL[surface.numberofpoints * 3];


//    // input faces

//}

///**
// * generate tetrahedra based on an surface mesh object
// * -INT_MAX for surf/vol-id inherits from the mesh
// */
//template <typename PFP3>
//typename PFP3::MAP process(const std::string& filename, double volume, double quality, int volid = -INT_MAX, int surfid = -INT_MAX)
//{

//}

//} //namespace Tetgen








untereiner's avatar
untereiner committed
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
///**
// * create a tetra based on the two triangles that have a common dart and phi2(dart)
// * return a new dart inside the tetra
// */
//template<typename PFP>
//Dart extractTetra(typename PFP::MAP& the_map, Dart d)
//{
//
//
//	Dart e = the_map.phi2(d);
//
//	//create the new faces
//	Dart dd = the_map.newFace(3);
//	Dart ee = the_map.newFace(3);
//
//	//update their sew
//	the_map.sewFaces(dd,ee);
//	the_map.sewFaces(the_map.phi3(dd),the_map.phi3(ee));
//
//	//add the two new faces in the mesh to obtain a tetra
//	Dart s2d = the_map.phi2(the_map.phi_1(d));
//	the_map.unsewFaces(the_map.phi_1(d));
//	the_map.sewFaces(the_map.phi_1(d),the_map.phi_1(dd));
//	the_map.sewFaces(s2d,the_map.phi3(the_map.phi_1(dd)));
//
//	Dart s2e = the_map.phi2(the_map.phi_1(e));
//	the_map.unsewFaces(the_map.phi_1(e));
//	the_map.sewFaces(the_map.phi_1(e),the_map.phi_1(ee));
//	the_map.sewFaces(s2e,the_map.phi3(the_map.phi_1(ee)));
//
//	Dart ss2d = the_map.phi2(the_map.phi1(d));
//	the_map.unsewFaces(the_map.phi1(d));
//	the_map.sewFaces(the_map.phi1(d),the_map.phi1(ee));
//	the_map.sewFaces(ss2d,the_map.phi3(the_map.phi1(ee)));
//
//	Dart ss2e = the_map.phi2(the_map.phi1(e));
//	the_map.unsewFaces(the_map.phi1(e));
//	the_map.sewFaces(the_map.phi1(e),the_map.phi1(dd));
//	the_map.sewFaces(ss2e,the_map.phi3(the_map.phi1(dd)));
//
//	//embed the coords
//	the_map.setVertexEmb(d,the_map.getVertexEmb(d));
//	the_map.setVertexEmb(e,the_map.getVertexEmb(e));
//	the_map.setVertexEmb(the_map.phi_1(d),the_map.getVertexEmb(the_map.phi_1(d)));
//	the_map.setVertexEmb(the_map.phi_1(e),the_map.getVertexEmb(the_map.phi_1(e)));
//
//	return dd;
//}
//
///**
// * tetrahedrization of the volume
// * @param the map
// * @param a dart of the volume
// * @param true if the faces are in CCW order
// * @return success of the tetrahedrization
// */
//template<typename PFP>
//bool smartVolumeTetrahedrization(typename PFP::MAP& the_map, Dart d, bool CCW=true)
//{
//
//	typedef typename PFP::EMB EMB;
//
//	bool ret=true;
//
//	if (!the_map.isTetrahedron(d))
//	{
//		//only works on a 3-map
//		assert(Dart::nbInvolutions()>=2 || "cannot be applied on this map, nbInvolutions must be at least 2");
//
//		if (Geometry::isConvex<PFP>(the_map,d,CCW))
//		{
//			the_map.tetrahedrizeVolume(d);
//		}
//		else
//		{
//
//			//get all the dart of the volume
//			std::vector<Dart> vStore;
//			FunctorStore fs(vStore);
//			the_map.foreach_dart_of_volume(d,fs);
//
//			if (vStore.size()==0)
//			{
//				if (the_map.phi1(d)==d)
//					CGoGNout << "plop" << CGoGNendl;
//				if (the_map.phi2(d)==d)
//					CGoGNout << "plip" << CGoGNendl;
//
//				CGoGNout << the_map.getVertexEmb(d)->getPosition() << CGoGNendl;
//				CGoGNout << "tiens tiens, c'est etrange" << CGoGNendl;
//			}
//			//prepare the list of embeddings of the current volume
//			std::vector<EMB *> lstEmb;
//
//			//get a marker
//			DartMarker m(the_map);
//
//			//all the darts from a vertex that can generate a tetra (3 adjacent faces)
//			std::vector<Dart> allowTetra;
//
//			//all the darts that are not in otherTetra
//			std::vector<Dart> otherTetra;
//
//			//for each dart of the volume
//			for (typename std::vector<Dart>::iterator it = vStore.begin() ; it != vStore.end() ; ++it )
//			{
//				Dart e = *it;
//				//if the vertex is not treated
//				if (!m.isMarked(e))
//				{
//					//store the embedding
//					lstEmb.push_back(reinterpret_cast<EMB*>(the_map.getVertexEmb(e)));
//					Dart ee=e;
//
//					//count the number of adjacent faces and mark the darts
//					int nbe=0;
//					do
//					{
//						nbe++;
//						m.markOrbit(DART,e);
//						ee=the_map.phi1(the_map.phi2(ee));
//					}
//					while (ee!=e);
//
//					//if 3 adjacents faces, we can create a tetra on this vertex
//					if (nbe==3)
//						allowTetra.push_back(e);
//					else
//						otherTetra.push_back(e);
//				}
//			}
//
//			//we haven't created a tetra yet
//			bool decoupe=false;
//
//			//if we have vertex that can be base
//			if (allowTetra.size()!=0)
//			{
//				//foreach possible vertex while we haven't done any cut
//				for (typename std::vector<Dart>::iterator it=allowTetra.begin();it!=allowTetra.end() && !decoupe ;++it)
//				{
//					//get the dart
//					Dart s=*it;
//					//store the emb
//					std::vector<EMB*> lstCurEmb;
//					lstCurEmb.push_back(reinterpret_cast<EMB*>(the_map.getVertexEmb(s)));
//					lstCurEmb.push_back(reinterpret_cast<EMB*>(the_map.getVertexEmb(the_map.phi1(s))));
//					lstCurEmb.push_back(reinterpret_cast<EMB*>(the_map.getVertexEmb(the_map.phi_1(s))));
//					lstCurEmb.push_back(reinterpret_cast<EMB*>(the_map.getVertexEmb(the_map.phi_1(the_map.phi2(s)))));
//
//					//store the coords of the point
//					gmtl::Vec3f points[4];
//					for (int i=0;i<4;++i)
//					{
//						points[i] = lstCurEmb[i]->getPosition();
//					}
//
//					//test if the future tetra is well oriented (concave case)
//					if (Geometry::isTetrahedronWellOriented(points,CCW))
//					{
//						//test if we haven't any point inside the future tetra
//						bool isEmpty=true;
//						for (typename std::vector<EMB *>::iterator iter = lstEmb.begin() ; iter != lstEmb.end() && isEmpty ; ++iter)
//						{
//							//we don't test the vertex that composes the new tetra
//							if (std::find(lstCurEmb.begin(),lstCurEmb.end(),*iter)==lstCurEmb.end())
//							{
//								isEmpty = !Geometry::isPointInTetrahedron(points, (*iter)->getPosition(), CCW);
//							}
//						}
//
//						//if no point inside the new tetra
//						if (isEmpty)
//						{
//							//cut the spike to make a tet
//							Dart dRes = the_map.cutSpike(*it);
//							decoupe=true;
//							//and continue with the rest of the volume
//							ret = ret && smartVolumeTetrahedrization<PFP>(the_map,the_map.phi3(dRes),CCW);
//						}
//					}
//				}
//			}
//
//			if (!decoupe)
//			{
//				//foreach other vertex while we haven't done any cut
//				for (typename std::vector<Dart>::iterator it=otherTetra.begin();it!=otherTetra.end() && !decoupe ;++it)
//				{
//					//get the dart
//					Dart s=*it;
//					//store the emb
//					std::vector<EMB*> lstCurEmb;
//					lstCurEmb.push_back(reinterpret_cast<EMB*>(the_map.getVertexEmb(s)));
//					lstCurEmb.push_back(reinterpret_cast<EMB*>(the_map.getVertexEmb(the_map.phi1(s))));
//					lstCurEmb.push_back(reinterpret_cast<EMB*>(the_map.getVertexEmb(the_map.phi_1(s))));
//					lstCurEmb.push_back(reinterpret_cast<EMB*>(the_map.getVertexEmb(the_map.phi_1(the_map.phi2(s)))));
//
//					//store the coords of the point
//					gmtl::Vec3f points[4];
//					for (int i=0;i<4;++i)
//					{
//						points[i] = lstCurEmb[i]->getPosition();
//					}
//
//					//test if the future tetra is well oriented (concave case)
//					if (Geometry::isTetrahedronWellOriented(points,CCW))
//					{
//						//test if we haven't any point inside the future tetra
//						bool isEmpty=true;
//						for (typename std::vector<EMB *>::iterator iter = lstEmb.begin() ; iter != lstEmb.end() && isEmpty ; ++iter)
//						{
//							//we don't test the vertex that composes the new tetra
//							if (std::find(lstCurEmb.begin(),lstCurEmb.end(),*iter)==lstCurEmb.end())
//							{
//								isEmpty = !Geometry::isPointInTetrahedron(points, (*iter)->getPosition(), CCW);
//							}
//						}
//
//						//if no point inside the new tetra
//						if (isEmpty)
//						{
//							//cut the spike to make a tet
//							Dart dRes = extractTetra<PFP>(the_map,*it);
//							decoupe=true;
//							//and continue with the rest of the volume
//							smartVolumeTetrahedrization<PFP>(the_map,the_map.phi3(dRes),CCW);
//						}
//					}
//				}
//			}
//
//			if (!decoupe)
//				ret=false;
//		}
//	}
//	return ret;
//}

Pierre Kraemer's avatar
Pierre Kraemer committed
1434
} // namespace Tetrahedralization
untereiner's avatar
untereiner committed
1435

Pierre Kraemer's avatar
Pierre Kraemer committed
1436
} // namespace Modelisation
Pierre Kraemer's avatar
Pierre Kraemer committed
1437

Pierre Kraemer's avatar
Pierre Kraemer committed
1438 1439
} // namespace Volume

Pierre Kraemer's avatar
Pierre Kraemer committed
1440
} // namespace Algo
Pierre Kraemer's avatar
Pierre Kraemer committed
1441

Pierre Kraemer's avatar
Pierre Kraemer committed
1442
} // namespace CGoGN