/******************************************************************************* * CGoGN: Combinatorial and Geometric modeling with Generic N-dimensional Maps * * version 0.1 * * Copyright (C) 2009-2012, IGG Team, LSIIT, University of Strasbourg * * * * This library is free software; you can redistribute it and/or modify it * * under the terms of the GNU Lesser General Public License as published by the * * Free Software Foundation; either version 2.1 of the License, or (at your * * option) any later version. * * * * This library is distributed in the hope that it will be useful, but WITHOUT * * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License * * for more details. * * * * You should have received a copy of the GNU Lesser General Public License * * along with this library; if not, write to the Free Software Foundation, * * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * * * Web site: http://cgogn.unistra.fr/ * * Contact information: cgogn@unistra.fr * * * *******************************************************************************/ #ifndef __3MR_FILTERS_PRIMAL__ #define __3MR_FILTERS_PRIMAL__ #include #include "Algo/Geometry/centroid.h" #include "Algo/Modelisation/tetrahedralization.h" namespace CGoGN { namespace Algo { namespace Multiresolution { class MRFilter { public: MRFilter() {} virtual ~MRFilter() {} virtual void operator() () = 0 ; } ; /********************************************************************************* * LOOP BASIC FUNCTIONS *********************************************************************************/ template typename PFP::VEC3 loopOddVertex(typename PFP::MAP& map, const VertexAttribute& position, Dart d1) { Dart d2 = map.phi2(d1) ; Dart d3 = map.phi_1(d1) ; Dart d4 = map.phi_1(d2) ; typename PFP::VEC3 p1 = position[d1] ; typename PFP::VEC3 p2 = position[d2] ; typename PFP::VEC3 p3 = position[d3] ; typename PFP::VEC3 p4 = position[d4] ; p1 *= 3.0 / 8.0 ; p2 *= 3.0 / 8.0 ; p3 *= 1.0 / 8.0 ; p4 *= 1.0 / 8.0 ; return p1 + p2 + p3 + p4 ; } template typename PFP::VEC3 loopEvenVertex(typename PFP::MAP& map, const VertexAttribute& position, Dart d) { map.incCurrentLevel() ; typename PFP::VEC3 np(0) ; unsigned int degree = 0 ; Traversor2VVaE trav(map, d) ; for(Dart it = trav.begin(); it != trav.end(); it = trav.next()) { ++degree ; np += position[it] ; } map.decCurrentLevel() ; float mu = 3.0/8.0 + 1.0/4.0 * cos(2.0 * M_PI / degree) ; mu = (5.0/8.0 - (mu * mu)) / degree ; np *= 8.0/5.0 * mu ; return np ; } /********************************************************************************* * SHW04 BASIC FUNCTIONS : tetrahedral/octahedral meshes *********************************************************************************/ template typename PFP::VEC3 SHW04Vertex(typename PFP::MAP& map, const VertexAttribute& position, Dart d) { typename PFP::VEC3 res(0); if(Algo::Modelisation::Tetrahedralization::isTetrahedron(map, d)) { Dart d1 = map.phi1(d) ; Dart d2 = map.phi_1(d); Dart d3 = map.phi_1(map.phi2(d)); typename PFP::VEC3 p = position[d]; typename PFP::VEC3 p1 = position[d1] ; typename PFP::VEC3 p2 = position[d2] ; typename PFP::VEC3 p3 = position[d3] ; p *= -1; p1 *= 17.0 / 3.0; p2 *= 17.0 / 3.0; p3 *= 17.0 / 3.0; res += p + p1 + p2 + p3; res *= 1.0 / 16.0; } else { Dart d1 = map.phi1(d); Dart d2 = map.phi_1(d); Dart d3 = map.phi_1(map.phi2(d)); Dart d4 = map.phi_1(map.phi2(d3)); Dart d5 = map.phi_1(map.phi2(map.phi_1(d))); typename PFP::VEC3 p = position[d]; typename PFP::VEC3 p1 = position[d1] ; typename PFP::VEC3 p2 = position[d2] ; typename PFP::VEC3 p3 = position[d3] ; typename PFP::VEC3 p4 = position[d4] ; typename PFP::VEC3 p5 = position[d5] ; p *= 3.0 / 4.0; p1 *= 1.0 / 6.0; p2 *= 1.0 / 6.0; p3 *= 1.0 / 6.0; p4 *= 7.0 / 12.0; p5 *= 1.0 / 6.0; res += p + p1 + p2 + p3 + p4 + p5; res *= 1.0 / 2.0; } return res; } /********************************************************************************* * BSXW02 BASIC FUNCTIONS : polyhedral meshes *********************************************************************************/ /********************************************************************************* * ANALYSIS FILTERS *********************************************************************************/ /* Loop *********************************************************************************/ template class LoopEvenAnalysisFilter : public MRFilter { protected: typename PFP::MAP& m_map ; VertexAttribute& m_position ; public: LoopEvenAnalysisFilter(typename PFP::MAP& m, VertexAttribute& p) : m_map(m), m_position(p) {} void operator() () { TraversorV trav(m_map) ; for (Dart d = trav.begin(); d != trav.end(); d = trav.next()) { if(m_map.isBoundaryVertex(d)) { Dart db = m_map.findBoundaryFaceOfVertex(d); typename PFP::VEC3 p = loopEvenVertex(m_map, m_position, db) ; m_position[db] -= p ; } } } } ; template class LoopNormalisationAnalysisFilter : public MRFilter { protected: typename PFP::MAP& m_map ; VertexAttribute& m_position ; public: LoopNormalisationAnalysisFilter(typename PFP::MAP& m, VertexAttribute& p) : m_map(m), m_position(p) {} void operator() () { TraversorV trav(m_map) ; for (Dart d = trav.begin(); d != trav.end(); d = trav.next()) { if(m_map.isBoundaryVertex(d)) { Dart db = m_map.findBoundaryFaceOfVertex(d); unsigned int degree = m_map.vertexDegreeOnBoundary(db) ; float n = 3.0/8.0 + 1.0/4.0 * cos(2.0 * M_PI / degree) ; n = 8.0/5.0 * (n * n) ; m_position[db] /= n ; } } } } ; template class LoopOddAnalysisFilter : public MRFilter { protected: typename PFP::MAP& m_map ; VertexAttribute& m_position ; public: LoopOddAnalysisFilter(typename PFP::MAP& m, VertexAttribute& p) : m_map(m), m_position(p) {} void operator() () { TraversorE trav(m_map) ; for (Dart d = trav.begin(); d != trav.end(); d = trav.next()) { if(m_map.isBoundaryEdge(d)) { Dart db = m_map.findBoundaryFaceOfEdge(d); typename PFP::VEC3 p = loopOddVertex(m_map, m_position, db) ; m_map.incCurrentLevel() ; Dart oddV = m_map.phi2(db) ; m_position[oddV] -= p ; m_map.decCurrentLevel() ; } else { typename PFP::VEC3 p = (m_position[d] + m_position[m_map.phi2(d)]) * typename PFP::REAL(0.5); m_map.incCurrentLevel() ; Dart midV = m_map.phi2(d) ; m_position[midV] -= p ; m_map.decCurrentLevel() ; } } } } ; /********************************************************************************* * SYNTHESIS FILTERS *********************************************************************************/ /* Linear Interpolation *********************************************************************************/ template class LerpEdgeSynthesisFilter : public MRFilter { protected: typename PFP::MAP& m_map ; VertexAttribute& m_position ; public: LerpEdgeSynthesisFilter(typename PFP::MAP& m, VertexAttribute& p) : m_map(m), m_position(p) {} void operator() () { TraversorE trav(m_map) ; for (Dart d = trav.begin(); d != trav.end(); d = trav.next()) { typename PFP::VEC3 p = (m_position[d] + m_position[m_map.phi2(d)]) * typename PFP::REAL(0.5); m_map.incCurrentLevel() ; Dart midV = m_map.phi2(d) ; m_position[midV] = p ; m_map.decCurrentLevel() ; } } } ; template class LerpFaceSynthesisFilter : public MRFilter { protected: typename PFP::MAP& m_map ; VertexAttribute& m_position ; public: LerpFaceSynthesisFilter(typename PFP::MAP& m, VertexAttribute& p) : m_map(m), m_position(p) {} void operator() () { TraversorF trav(m_map) ; for (Dart d = trav.begin(); d != trav.end(); d = trav.next()) { typename PFP::VEC3 p = Algo::Geometry::faceCentroid(m_map, d, m_position); m_map.incCurrentLevel() ; if(m_map.faceDegree(d) != 3) { Dart midF = m_map.phi2(m_map.phi1(d)); m_position[midF] = p ; } m_map.decCurrentLevel() ; } } } ; template class LerpVolumeSynthesisFilter : public MRFilter { protected: typename PFP::MAP& m_map ; VertexAttribute& m_position ; public: LerpVolumeSynthesisFilter(typename PFP::MAP& m, VertexAttribute& p) : m_map(m), m_position(p) {} void operator() () { TraversorW trav(m_map) ; for (Dart d = trav.begin(); d != trav.end(); d = trav.next()) { typename PFP::VEC3 p = Algo::Geometry::volumeCentroid(m_map, d, m_position); m_map.incCurrentLevel() ; if(!Algo::Modelisation::Tetrahedralization::isTetrahedron(m_map,d)) { Dart midV = m_map.phi_1(m_map.phi2(m_map.phi1(d))); m_position[midV] = p ; } m_map.decCurrentLevel() ; } } } ; /* Ber02 *********************************************************************************/ //w-lift(a) template class Ber02OddSynthesisFilter : public MRFilter { protected: typename PFP::MAP& m_map ; VertexAttribute& m_position ; public: Ber02OddSynthesisFilter(typename PFP::MAP& m, VertexAttribute& p) : m_map(m), m_position(p) {} void operator() () { float a = 0.5; TraversorW travW(m_map) ; for (Dart d = travW.begin(); d != travW.end(); d = travW.next()) { typename PFP::VEC3 vc = Algo::Geometry::volumeCentroid(m_map, d, m_position); unsigned int count = 0; typename PFP::VEC3 ec(0); Traversor3WE travWE(m_map, d); for (Dart dit = travWE.begin(); dit != travWE.end(); dit = travWE.next()) { m_map.incCurrentLevel(); ec += m_position[m_map.phi2(dit)]; m_map.decCurrentLevel(); ++count; } ec /= count; count = 0; typename PFP::VEC3 fc(0); Traversor3WF travWF(m_map, d); for (Dart dit = travWF.begin(); dit != travWF.end(); dit = travWF.next()) { m_map.incCurrentLevel(); fc += m_position[m_map.phi2(m_map.phi1(dit))]; m_map.decCurrentLevel(); ++count; } fc /= count; m_map.incCurrentLevel() ; Dart midV = m_map.phi_1(m_map.phi2(m_map.phi1(d))); m_position[midV] += 8 * a * a * a * vc + 12 * a * a * ec + 6 * a * fc; m_map.decCurrentLevel() ; } TraversorF travF(m_map) ; for (Dart d = travF.begin(); d != travF.end(); d = travF.next()) { typename PFP::VEC3 vf = Algo::Geometry::faceCentroid(m_map, d, m_position); typename PFP::VEC3 ef(0); unsigned int count = 0; Traversor3FE travFE(m_map, d); for (Dart dit = travFE.begin(); dit != travFE.end(); dit = travFE.next()) { m_map.incCurrentLevel(); ef += m_position[m_map.phi2(dit)]; m_map.decCurrentLevel(); ++count; } ef /= count; m_map.incCurrentLevel() ; Dart midF = m_map.phi2(m_map.phi1(d)); m_position[midF] += vf * 4.0 * a * a + ef * 4.0 * a; m_map.decCurrentLevel() ; } TraversorE travE(m_map) ; for (Dart d = travE.begin(); d != travE.end(); d = travE.next()) { typename PFP::VEC3 ve = (m_position[d] + m_position[m_map.phi2(d)]) * typename PFP::REAL(0.5); m_map.incCurrentLevel() ; Dart midV = m_map.phi2(d) ; m_position[midV] += ve * a * 2.0; m_map.decCurrentLevel() ; } } } ; // s-lift(a) template class Ber02EvenSynthesisFilter : public MRFilter { protected: typename PFP::MAP& m_map ; VertexAttribute& m_position ; public: Ber02EvenSynthesisFilter(typename PFP::MAP& m, VertexAttribute& p) : m_map(m), m_position(p) {} void operator() () { float a = 0.5; TraversorV travV(m_map); for(Dart d = travV.begin() ; d != travV.end() ; d = travV.next()) { if(!m_map.isBoundaryVertex(d)) { typename PFP::VEC3 cv(0); unsigned int count = 0; Traversor3VW travVW(m_map,d); for(Dart dit = travVW.begin(); dit != travVW.end() ; dit = travVW.next()) { m_map.incCurrentLevel() ; Dart midV = m_map.phi_1(m_map.phi2(m_map.phi1(dit))); cv += m_position[midV]; m_map.decCurrentLevel() ; ++count; } cv /= count; typename PFP::VEC3 fv(0); count = 0; Traversor3VF travVF(m_map,d); for(Dart dit = travVF.begin(); dit != travVF.end() ; dit = travVF.next()) { m_map.incCurrentLevel() ; Dart midV = m_map.phi2(m_map.phi1(dit)); fv += m_position[midV]; m_map.decCurrentLevel() ; ++count; } fv /= count; typename PFP::VEC3 ev(0); count = 0; Traversor3VE travVE(m_map,d); for(Dart dit = travVE.begin(); dit != travVE.end() ; dit = travVE.next()) { m_map.incCurrentLevel() ; Dart midV = m_map.phi2(dit); ev += m_position[midV]; m_map.decCurrentLevel() ; ++count; } ev /= count; m_position[d] += cv * 8 * a * a * a + fv * 12 * a * a + ev * 6 * a; } else { Dart db = m_map.findBoundaryFaceOfVertex(d); typename PFP::VEC3 fv(0); unsigned int count = 0; Traversor2VF travVF(m_map,db); for(Dart dit = travVF.begin(); dit != travVF.end() ; dit = travVF.next()) { m_map.incCurrentLevel() ; Dart midV = m_map.phi2(m_map.phi1(dit)); fv += m_position[midV]; m_map.decCurrentLevel() ; ++count; } fv /= count; typename PFP::VEC3 ev(0); count = 0; Traversor2VE travVE(m_map,db); for(Dart dit = travVE.begin(); dit != travVE.end() ; dit = travVE.next()) { m_map.incCurrentLevel() ; Dart midV = m_map.phi2(dit); ev += m_position[midV]; m_map.decCurrentLevel() ; ++count; } ev /= count; m_position[db] += fv * 4 * a * a + ev * 4 * a; } } TraversorE travE(m_map); for(Dart d = travE.begin() ; d != travE.end() ; d = travE.next()) { if(m_map.isBoundaryEdge(d)) { Dart db = m_map.findBoundaryFaceOfEdge(d); typename PFP::VEC3 fe(0); m_map.incCurrentLevel() ; Dart midV = m_map.phi2(m_map.phi1(db)); fe += m_position[midV]; m_map.decCurrentLevel() ; m_map.incCurrentLevel() ; midV = m_map.phi2(m_map.phi1(m_map.phi2(db))); fe += m_position[midV]; m_map.decCurrentLevel() ; fe /= 2; m_map.incCurrentLevel() ; Dart midF = m_map.phi2(db); m_position[midF] += fe * 2 * a; m_map.decCurrentLevel() ; } else { typename PFP::VEC3 ce(0); unsigned int count = 0; Traversor3EW travEW(m_map, d); for(Dart dit = travEW.begin() ; dit != travEW.end() ; dit = travEW.next()) { m_map.incCurrentLevel() ; Dart midV = m_map.phi_1(m_map.phi2(m_map.phi1(dit))); ce += m_position[midV]; m_map.decCurrentLevel() ; ++count; } ce /= count; typename PFP::VEC3 fe(0); count = 0; Traversor3FW travFW(m_map, d); for(Dart dit = travFW.begin() ; dit != travFW.end() ; dit = travFW.next()) { m_map.incCurrentLevel() ; Dart midV = m_map.phi2(m_map.phi1(dit)); fe += m_position[midV]; m_map.decCurrentLevel() ; ++count; } fe /= count; m_map.incCurrentLevel() ; Dart midF = m_map.phi2(d); m_position[midF] += ce * 4 * a * a + fe * 4 * a; m_map.decCurrentLevel() ; } } TraversorF travF(m_map) ; for (Dart d = travF.begin(); d != travF.end(); d = travF.next()) { typename PFP::VEC3 cf(0); m_map.incCurrentLevel(); Dart midV = m_map.phi_1(m_map.phi2(m_map.phi1(d))); cf += m_position[midV]; m_map.decCurrentLevel(); if(!m_map.isBoundaryFace(d)) { Dart d3 = m_map.phi3(d); m_map.incCurrentLevel(); Dart midV = m_map.phi_1(m_map.phi2(m_map.phi1(d3))); cf += m_position[midV]; m_map.decCurrentLevel(); cf /= 2; } m_map.incCurrentLevel() ; Dart midF = m_map.phi2(m_map.phi1(d)); m_position[midF] += cf * 2 * a; m_map.decCurrentLevel() ; } } } ; // s-scale(a) template class Ber02ScaleSynthesisFilter : public MRFilter { protected: typename PFP::MAP& m_map ; VertexAttribute& m_position ; public: Ber02ScaleSynthesisFilter(typename PFP::MAP& m, VertexAttribute& p) : m_map(m), m_position(p) {} void operator() () { float a = 0.5; TraversorV travV(m_map) ; for (Dart d = travV.begin(); d != travV.end(); d = travV.next()) { if(m_map.isBoundaryVertex(d)) { Dart db = m_map.findBoundaryFaceOfVertex(d); m_position[db] *= a * a; } else { m_position[d] *= a * a * a; } } TraversorE travE(m_map) ; for (Dart d = travE.begin(); d != travE.end(); d = travE.next()) { if(m_map.isBoundaryEdge(d)) { Dart db = m_map.findBoundaryFaceOfEdge(d); m_map.incCurrentLevel() ; Dart midE = m_map.phi2(db); m_position[midE] *= a ; m_map.decCurrentLevel() ; } else { m_map.incCurrentLevel() ; Dart midE = m_map.phi2(d); m_position[midE] *= a * a; m_map.decCurrentLevel() ; } } TraversorF travF(m_map) ; for (Dart d = travF.begin(); d != travF.end(); d = travF.next()) { if(!m_map.isBoundaryFace(d)) { m_map.incCurrentLevel() ; Dart midF = m_map.phi2(m_map.phi1(d)); m_position[midF] *= a ; m_map.decCurrentLevel() ; } } } } ; /* Loop on Boundary Vertices and SHW04 on Insides Vertices *********************************************************************************/ template class LoopOddSynthesisFilter : public MRFilter { protected: typename PFP::MAP& m_map ; VertexAttribute& m_position ; public: LoopOddSynthesisFilter(typename PFP::MAP& m, VertexAttribute& p) : m_map(m), m_position(p) {} void operator() () { TraversorE trav(m_map) ; for (Dart d = trav.begin(); d != trav.end(); d = trav.next()) { if(m_map.isBoundaryEdge(d)) { Dart db = m_map.findBoundaryFaceOfEdge(d); typename PFP::VEC3 p = loopOddVertex(m_map, m_position, db) ; m_map.incCurrentLevel() ; Dart oddV = m_map.phi2(db) ; m_position[oddV] += p ; m_map.decCurrentLevel() ; } else { typename PFP::VEC3 p = (m_position[d] + m_position[m_map.phi2(d)]) * typename PFP::REAL(0.5); m_map.incCurrentLevel() ; Dart midV = m_map.phi2(d) ; m_position[midV] += p ; m_map.decCurrentLevel() ; } } } } ; template class LoopNormalisationSynthesisFilter : public MRFilter { protected: typename PFP::MAP& m_map ; VertexAttribute& m_position ; public: LoopNormalisationSynthesisFilter(typename PFP::MAP& m, VertexAttribute& p) : m_map(m), m_position(p) {} void operator() () { TraversorV trav(m_map) ; for (Dart d = trav.begin(); d != trav.end(); d = trav.next()) { if(m_map.isBoundaryVertex(d)) { Dart db = m_map.findBoundaryFaceOfVertex(d); unsigned int degree = m_map.vertexDegreeOnBoundary(db) ; float n = 3.0/8.0 + 1.0/4.0 * cos(2.0 * M_PI / degree) ; n = 8.0/5.0 * (n * n) ; m_position[db] *= n ; } } } } ; template class LoopEvenSynthesisFilter : public MRFilter { protected: typename PFP::MAP& m_map ; VertexAttribute& m_position ; public: LoopEvenSynthesisFilter(typename PFP::MAP& m, VertexAttribute& p) : m_map(m), m_position(p) {} void operator() () { TraversorV trav(m_map) ; for (Dart d = trav.begin(); d != trav.end(); d = trav.next()) { if(m_map.isBoundaryVertex(d)) { Dart db = m_map.findBoundaryFaceOfVertex(d); typename PFP::VEC3 p = loopEvenVertex(m_map, m_position, db) ; m_position[db] += p ; } } } } ; template class LoopVolumeSynthesisFilter : public MRFilter { protected: typename PFP::MAP& m_map ; VertexAttribute& m_position ; public: LoopVolumeSynthesisFilter(typename PFP::MAP& m, VertexAttribute& p) : m_map(m), m_position(p) {} void operator() () { TraversorW trav(m_map) ; for (Dart d = trav.begin(); d != trav.end(); d = trav.next()) { if(!Algo::Modelisation::Tetrahedralization::isTetrahedron(m_map,d)) { typename PFP::VEC3 p = Algo::Geometry::volumeCentroid(m_map, d, m_position); m_map.incCurrentLevel() ; Dart midV = m_map.phi_1(m_map.phi2(m_map.phi1(d))); m_position[midV] = p ; m_map.decCurrentLevel() ; } } } } ; template class SHW04VolumeNormalisationSynthesisFilter : public MRFilter { protected: typename PFP::MAP& m_map ; VertexAttribute& m_position ; public: SHW04VolumeNormalisationSynthesisFilter(typename PFP::MAP& m, VertexAttribute& p) : m_map(m), m_position(p) {} void operator() () { m_map.incCurrentLevel() ; TraversorV trav(m_map) ; for (Dart d = trav.begin(); d != trav.end(); d = trav.next()) { if(!m_map.isBoundaryVertex(d)) { typename PFP::VEC3 p = typename PFP::VEC3(0); unsigned int degree = 0; Traversor3VW travVW(m_map, d); for(Dart dit = travVW.begin() ; dit != travVW.end() ; dit = travVW.next()) { p += SHW04Vertex(m_map, m_position, dit); ++degree; } p /= degree; m_position[d] = p ; } } m_map.decCurrentLevel() ; } } ; /* Catmull-clark on Boundary Vertices and MJ96 on Insides Vertices *********************************************************************************/ template class MJ96VertexSubdivision : public MRFilter { protected: typename PFP::MAP& m_map ; VertexAttribute& m_position ; public: MJ96VertexSubdivision(typename PFP::MAP& m, VertexAttribute& p) : m_map(m), m_position(p) {} void operator() () { TraversorV trav(m_map) ; for (Dart d = trav.begin(); d != trav.end(); d = trav.next()) { if(m_map.isBoundaryVertex(d)) { Dart db = m_map.findBoundaryFaceOfVertex(d); typename PFP::VEC3 np1(0) ; typename PFP::VEC3 np2(0) ; unsigned int degree1 = 0 ; unsigned int degree2 = 0 ; Dart it = db ; do { ++degree1 ; Dart dd = m_map.phi1(it) ; np1 += m_position[dd] ; Dart end = m_map.phi_1(it) ; dd = m_map.phi1(dd) ; do { ++degree2 ; np2 += m_position[dd] ; dd = m_map.phi1(dd) ; } while(dd != end) ; it = m_map.phi2(m_map.phi_1(it)) ; } while(it != db) ; float beta = 3.0 / (2.0 * degree1) ; float gamma = 1.0 / (4.0 * degree2) ; np1 *= beta / degree1 ; np2 *= gamma / degree2 ; typename PFP::VEC3 vp = m_position[db] ; vp *= 1.0 - beta - gamma ; m_map.incCurrentLevel() ; m_position[d] = np1 + np2 + vp ; m_map.decCurrentLevel() ; } else { typename PFP::VEC3 P = m_position[d]; //vertex points typename PFP::VEC3 Cavg = typename PFP::VEC3(0); unsigned int degree = 0; Traversor3VW travVW(m_map, d); for(Dart dit = travVW.begin() ; dit != travVW.end() ; dit = travVW.next()) { Cavg += Algo::Geometry::volumeCentroid(m_map, dit, m_position); ++degree; } Cavg /= degree; typename PFP::VEC3 Aavg = typename PFP::VEC3(0); degree = 0; Traversor3VF travVF(m_map, d); for(Dart dit = travVF.begin() ; dit != travVF.end() ; dit = travVF.next()) { Aavg += Algo::Geometry::faceCentroid(m_map, dit, m_position); ++degree; } Aavg /= degree; typename PFP::VEC3 Mavg = typename PFP::VEC3(0); degree = 0; Traversor3VE travVE(m_map, d); for(Dart dit = travVE.begin() ; dit != travVE.end() ; dit = travVE.next()) { Dart d2 = m_map.phi2(dit); Aavg += (m_position[dit] + m_position[d2]) * typename PFP::REAL(0.5); ++degree; } Aavg /= degree; typename PFP::VEC3 vp = Cavg + Aavg * 3 + Mavg * 3 + P; vp /= 8; m_map.incCurrentLevel() ; m_position[d] = P;//vp; m_map.decCurrentLevel() ; } } } }; template class MJ96EdgeSubdivision : public MRFilter { protected: typename PFP::MAP& m_map ; VertexAttribute& m_position ; public: MJ96EdgeSubdivision(typename PFP::MAP& m, VertexAttribute& p) : m_map(m), m_position(p) {} void operator() () { TraversorE trav(m_map) ; for (Dart d = trav.begin(); d != trav.end(); d = trav.next()) { if(m_map.isBoundaryEdge(d)) { Dart db = m_map.findBoundaryFaceOfEdge(d); Dart d1 = m_map.phi2(db) ; Dart d2 = m_map.phi2(d1) ; Dart d3 = m_map.phi_1(d1) ; Dart d4 = m_map.phi_1(d2) ; Dart d5 = m_map.phi1(m_map.phi1(d1)) ; Dart d6 = m_map.phi1(m_map.phi1(d2)) ; typename PFP::VEC3 p1 = m_position[d1] ; typename PFP::VEC3 p2 = m_position[d2] ; typename PFP::VEC3 p3 = m_position[d3] ; typename PFP::VEC3 p4 = m_position[d4] ; typename PFP::VEC3 p5 = m_position[d5] ; typename PFP::VEC3 p6 = m_position[d6] ; p1 *= 3.0 / 8.0 ; p2 *= 3.0 / 8.0 ; p3 *= 1.0 / 16.0 ; p4 *= 1.0 / 16.0 ; p5 *= 1.0 / 16.0 ; p6 *= 1.0 / 16.0 ; m_map.incCurrentLevel() ; Dart midV = m_map.phi2(d); m_position[midV] = p1 + p2 + p3 + p4 + p5 + p6 ; m_map.decCurrentLevel() ; } else { //edge points typename PFP::VEC3 Cavg = typename PFP::VEC3(0); unsigned int degree = 0; Traversor3EW travEW(m_map, d); for(Dart dit = travEW.begin() ; dit != travEW.end() ; dit = travEW.next()) { Cavg += Algo::Geometry::volumeCentroid(m_map, dit, m_position); ++degree; } Cavg /= degree; typename PFP::VEC3 Aavg = typename PFP::VEC3(0); degree = 0; Traversor3EF travEF(m_map, d); for(Dart dit = travEF.begin() ; dit != travEF.end() ; dit = travEF.next()) { Aavg += Algo::Geometry::faceCentroid(m_map, dit, m_position); ++degree; } Aavg /= degree; Dart d2 = m_map.phi2(d); typename PFP::VEC3 M = (m_position[d] + m_position[d2]) * typename PFP::REAL(0.5); typename PFP::VEC3 ep = Cavg + Aavg * 2 + M * (degree - 3); ep /= degree; m_map.incCurrentLevel() ; Dart midV = m_map.phi2(d); m_position[midV] = ep; m_map.decCurrentLevel() ; } } } }; template class MJ96FaceSubdivision : public MRFilter { protected: typename PFP::MAP& m_map ; VertexAttribute& m_position ; public: MJ96FaceSubdivision(typename PFP::MAP& m, VertexAttribute& p) : m_map(m), m_position(p) {} void operator() () { TraversorF trav(m_map) ; for (Dart d = trav.begin(); d != trav.end(); d = trav.next()) { if(m_map.isBoundaryFace(d)) { Dart db = m_map.phi3(d); typename PFP::VEC3 p(0) ; unsigned int degree = 0 ; Traversor2FV trav(m_map, db) ; for(Dart it = trav.begin(); it != trav.end(); it = trav.next()) { ++degree ; p += m_position[it] ; } p /= degree ; m_map.incCurrentLevel() ; Dart df = m_map.phi1(m_map.phi1(d)) ; m_position[df] = p ; m_map.decCurrentLevel() ; } else { //face points typename PFP::VEC3 C0 = Algo::Geometry::volumeCentroid(m_map, d, m_position); typename PFP::VEC3 C1 = Algo::Geometry::volumeCentroid(m_map, m_map.phi3(d), m_position); typename PFP::VEC3 A = Algo::Geometry::faceCentroid(m_map, m_map.phi3(d), m_position); typename PFP::VEC3 fp = C0 + A * 2 + C1; fp /= 4; m_map.incCurrentLevel() ; Dart df = m_map.phi1(m_map.phi1(d)) ; m_position[df] = fp; m_map.decCurrentLevel() ; } } } }; template class MJ96VolumeSubdivision : public MRFilter { protected: typename PFP::MAP& m_map ; VertexAttribute& m_position ; public: MJ96VolumeSubdivision(typename PFP::MAP& m, VertexAttribute& p) : m_map(m), m_position(p) {} void operator() () { TraversorW trav(m_map) ; for (Dart d = trav.begin(); d != trav.end(); d = trav.next()) { //cell points : these points are the average of the //vertices of the lattice that bound the cell typename PFP::VEC3 p = Algo::Geometry::volumeCentroid(m_map, d, m_position); m_map.incCurrentLevel() ; if(!Algo::Modelisation::Tetrahedralization::isTetrahedron(m_map,d)) { Dart midV = m_map.phi_1(m_map.phi2(m_map.phi1(d))); m_position[midV] = p ; } m_map.decCurrentLevel() ; } } }; } // namespace Multiresolution } // namespace Algo } // namespace CGoGN #endif /* __3MR_FILTERS_PRIMAL__ */