Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
C
CGoGN
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
1
Issues
1
List
Boards
Labels
Service Desk
Milestones
Merge Requests
0
Merge Requests
0
Operations
Operations
Incidents
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
CGoGN
CGoGN
Commits
50a9f367
Commit
50a9f367
authored
Apr 12, 2012
by
untereiner
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
starting working on MR Progressive Meshes
parent
00a75e94
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
620 additions
and
52 deletions
+620
-52
include/Algo/Import/import2tablesSurface.hpp
include/Algo/Import/import2tablesSurface.hpp
+1
-2
include/Algo/Import/importMesh.hpp
include/Algo/Import/importMesh.hpp
+2
-2
include/Topology/generic/traversor3.h
include/Topology/generic/traversor3.h
+3
-3
include/Topology/map/map2MR/map2MR_PM.h
include/Topology/map/map2MR/map2MR_PM.h
+79
-0
include/Topology/map/map3MR/schemes_Primal.h
include/Topology/map/map3MR/schemes_Primal.h
+407
-45
src/Topology/map/map2MR/map2MR_PM.cpp
src/Topology/map/map2MR/map2MR_PM.cpp
+128
-0
No files found.
include/Algo/Import/import2tablesSurface.hpp
View file @
50a9f367
...
...
@@ -120,7 +120,6 @@ bool MeshTablesSurface<PFP>::importMesh(const std::string& filename, std::vector
CGoGNout << "TYPE: PLYSLFgenericBin" << CGoGNendl;
return importPlySLFgenericBin(filename, attrNames);
break;
case ImportSurfacique::OBJ:
CGoGNout << "TYPE: OBJ" << CGoGNendl;
return importObj(filename, attrNames);
...
...
@@ -591,7 +590,7 @@ bool MeshTablesSurface<PFP>::importPly(const std::string& filename, std::vector<
CGoGNerr << "Unable to open file " << filename << CGoGNendl;
return false;
}
AttributeHandler<typename PFP::VEC3> colors = m_map.template getAttribute<typename PFP::VEC3>(VERTEX, "color") ;
if (pid.hasColors())
{
...
...
include/Algo/Import/importMesh.hpp
View file @
50a9f367
...
...
@@ -268,8 +268,8 @@ bool importMeshV(typename PFP::MAP& map, const std::string& filename, std::vecto
if
((
filename
.
rfind
(
".tet"
)
!=
std
::
string
::
npos
)
||
(
filename
.
rfind
(
".TET"
)
!=
std
::
string
::
npos
))
kind
=
ImportVolumique
::
TET
;
if
((
filename
.
rfind
(
".
ele"
)
!=
std
::
string
::
npos
)
||
(
filename
.
rfind
(
".ELE
"
)
!=
std
::
string
::
npos
))
kind
=
ImportVolumique
::
ELE
;
if
((
filename
.
rfind
(
".
off"
)
!=
std
::
string
::
npos
)
||
(
filename
.
rfind
(
".OFF
"
)
!=
std
::
string
::
npos
))
kind
=
ImportVolumique
::
OFF
;
if
((
filename
.
rfind
(
".ts"
)
!=
std
::
string
::
npos
)
||
(
filename
.
rfind
(
".TS"
)
!=
std
::
string
::
npos
))
kind
=
ImportVolumique
::
TS
;
...
...
include/Topology/generic/traversor3.h
View file @
50a9f367
...
...
@@ -323,7 +323,7 @@ public:
/**
* Traverse volumes adjacent to a volume
e
by a vertex
* Traverse volumes adjacent to a volume by a vertex
*/
template
<
typename
MAP
>
class
Traversor3WWaV
:
public
Traversor3XXaY
<
MAP
>
...
...
@@ -333,7 +333,7 @@ public:
};
/**
* Traverse volumes adjacent to a volume
e
by an edge
* Traverse volumes adjacent to a volume by an edge
*/
template
<
typename
MAP
>
class
Traversor3WWaE
:
public
Traversor3XXaY
<
MAP
>
...
...
@@ -343,7 +343,7 @@ public:
};
/**
* Traverse volumes adjacent to a volume
e
by a face
* Traverse volumes adjacent to a volume by a face
*/
template
<
typename
MAP
>
class
Traversor3WWaF
:
public
Traversor3XXaY
<
MAP
>
...
...
include/Topology/map/map2MR/map2MR_PM.h
0 → 100644
View file @
50a9f367
/*******************************************************************************
* CGoGN: Combinatorial and Geometric modeling with Generic N-dimensional Maps *
* version 0.1 *
* Copyright (C) 2009-2012, IGG Team, LSIIT, University of Strasbourg *
* *
* This library is free software; you can redistribute it and/or modify it *
* under the terms of the GNU Lesser General Public License as published by the *
* Free Software Foundation; either version 2.1 of the License, or (at your *
* option) any later version. *
* *
* This library is distributed in the hope that it will be useful, but WITHOUT *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License *
* for more details. *
* *
* You should have received a copy of the GNU Lesser General Public License *
* along with this library; if not, write to the Free Software Foundation, *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
* *
* Web site: http://cgogn.unistra.fr/ *
* Contact information: cgogn@unistra.fr *
* *
*******************************************************************************/
#ifndef __MAP2MR_PM__
#define __MAP2MR_PM__
#include "Topology/map/embeddedMap2.h"
#include "Topology/generic/traversorCell.h"
#include "Topology/generic/traversor2.h"
#include "Topology/map/map2MR/filters_Primal.h"
#include "Algo/Modelisation/subdivision.h"
namespace
CGoGN
{
class
SelectorCollapsingEdges
:
public
FunctorSelect
{
protected:
const
DartMarker
&
m_dm
;
public:
SelectorCollapsingEdges
(
const
DartMarker
&
dm
)
:
m_dm
(
dm
)
{}
bool
operator
()(
Dart
d
)
const
{
return
m_dm
.
isMarked
(
d
);
}
FunctorSelect
*
copy
()
const
{
return
new
SelectorCollapsingEdges
(
m_dm
);}
};
class
Map2MR_PM
:
public
EmbeddedMap2
{
protected:
bool
shareVertexEmbeddings
;
std
::
vector
<
Multiresolution
::
MRFilter
*>
synthesisFilters
;
std
::
vector
<
Multiresolution
::
MRFilter
*>
analysisFilters
;
DartMarkerStore
*
selectedEdges
;
public:
Map2MR_PM
()
;
virtual
std
::
string
mapTypeName
()
const
{
return
"Map2MR_PM"
;
}
void
addNewLevel
(
bool
embedNewVertices
=
true
)
;
void
addSynthesisFilter
(
Multiresolution
::
MRFilter
*
f
)
{
synthesisFilters
.
push_back
(
f
)
;
}
void
addAnalysisFilter
(
Multiresolution
::
MRFilter
*
f
)
{
analysisFilters
.
push_back
(
f
)
;
}
void
clearSynthesisFilters
()
{
synthesisFilters
.
clear
()
;
}
void
clearAnalysisFilters
()
{
analysisFilters
.
clear
()
;
}
void
analysis
()
;
void
synthesis
()
;
}
;
}
;
}
// namespace CGoGN
#endif
include/Topology/map/map3MR/schemes_Primal.h
View file @
50a9f367
...
...
@@ -609,137 +609,499 @@ public:
}
};
/*
BSXW02 on Boundary Vertices and on Insides Vertices
/*
Lerp on Boundary Vertices and on Insides Vertices and BSXW02 Averaging
*********************************************************************************/
template <typename PFP>
class
BSXW02
Vertex
Subdivision
:
public
MRScheme
class BSXW02
Averaging
Subdivision : public MRScheme
{
protected:
typename PFP::MAP& m_map ;
typename PFP::TVEC3& m_position ;
public:
BSXW02
Vertex
Subdivision
(
typename
PFP
::
MAP
&
m
,
typename
PFP
::
TVEC3
&
p
)
:
m_map
(
m
),
m_position
(
p
)
BSXW02
Averaging
Subdivision(typename PFP::MAP& m, typename PFP::TVEC3& p) : m_map(m), m_position(p)
{}
void operator() ()
{
TraversorW
<
typename
PFP
::
MAP
>
trav
(
m_map
)
;
for
(
Dart
d
=
trav
.
begin
();
d
!=
trav
.
end
();
d
=
trav
.
next
())
m_map.incCurrentLevel() ;
TraversorV<typename PFP::MAP> trav(m_map) ;
for (Dart ditE = trav.begin(); ditE != trav.end(); ditE = trav.next())
{
//cell points : these points are the average of the
//vertices of the lattice that bound the cell
typename
PFP
::
VEC3
p
=
Algo
::
Geometry
::
volumeCentroid
<
PFP
>
(
m_map
,
d
,
m_position
);
if(m_map.isBoundaryVertex(ditE))
{
Dart db = m_map.findBoundaryFaceOfVertex(ditE
);
m_map
.
incCurrentLevel
()
;
typename PFP::VEC3 P(0);
unsigned int count = 0;
Traversor2VF<typename PFP::MAP> travVF(m_map, db);
for (Dart ditVF = travVF.begin(); ditVF != travVF.end(); ditVF = travVF.next())
{
P += Algo::Geometry::faceCentroid<PFP>(m_map, ditVF, m_position);
++count;
}
if
(
!
m_map
.
isTetrahedron
(
d
))
P /= count;
m_position[db] = P;
}
else if(m_map.isBoundaryEdge(ditE))
{
Dart
midV
=
m_map
.
phi_1
(
m_map
.
phi2
(
m_map
.
phi1
(
d
)));
m_position
[
midV
]
=
p
;
Dart db = m_map.findBoundaryEdgeOfVertex(ditE);
typename PFP::VEC3 P(0);
unsigned int count = 0;
Traversor2VF<typename PFP::MAP> travVF(m_map, db);
for (Dart ditVF = travVF.begin(); ditVF != travVF.end(); ditVF = travVF.next())
{
P += Algo::Geometry::faceCentroid<PFP>(m_map, ditVF, m_position);
++count;
}
P /= count;
m_position[db] = P;
}
else
{
typename PFP::VEC3 P(0);
unsigned int count = 0;
Traversor3VW<typename PFP::MAP> travVF(m_map, ditE);
for (Dart ditVF = travVF.begin(); ditVF != travVF.end(); ditVF = travVF.next())
{
P += Algo::Geometry::volumeCentroid<PFP>(m_map, ditVF, m_position);
++count;
}
m_map
.
decCurrentLevel
()
;
P /= count;
m_position[ditE] = P;
}
}
m_map.decCurrentLevel() ;
}
};
template <typename PFP>
class
BSXW02EdgeSubdivision
:
public
MRScheme
class BSXW02Edge
Averaging
Subdivision : public MRScheme
{
protected:
typename PFP::MAP& m_map ;
typename PFP::TVEC3& m_position ;
public:
BSXW02EdgeSubdivision
(
typename
PFP
::
MAP
&
m
,
typename
PFP
::
TVEC3
&
p
)
:
m_map
(
m
),
m_position
(
p
)
BSXW02Edge
Averaging
Subdivision(typename PFP::MAP& m, typename PFP::TVEC3& p) : m_map(m), m_position(p)
{}
void operator() ()
{
Traversor
W
<
typename
PFP
::
MAP
>
trav
(
m_map
)
;
for
(
Dart
d
=
trav
.
begin
();
d
!=
trav
.
end
();
d
=
trav
.
next
())
Traversor
E
<typename PFP::MAP> trav(m_map) ;
for (Dart d
itE = trav.begin(); ditE != trav.end(); ditE
= trav.next())
{
//cell points : these points are the average of the
//vertices of the lattice that bound the cell
typename
PFP
::
VEC3
p
=
Algo
::
Geometry
::
volumeCentroid
<
PFP
>
(
m_map
,
d
,
m_position
);
if(m_map.isBoundaryEdge(ditE))
{
Dart db = m_map.findBoundaryFaceOfEdge(ditE
);
m_map
.
incCurrentLevel
()
;
m_map.incCurrentLevel() ;
if
(
!
m_map
.
isTetrahedron
(
d
))
db = m_map.phi1(db);
typename PFP::VEC3 P(0);
unsigned int count = 0;
Traversor2VF<typename PFP::MAP> travVF(m_map, db);
for (Dart ditVF = travVF.begin(); ditVF != travVF.end(); ditVF = travVF.next())
{
P += Algo::Geometry::faceCentroid<PFP>(m_map, ditVF, m_position);
++count;
}
P /= count;
m_position[db] = P;
m_map.decCurrentLevel() ;
}
}
}
};
template <typename PFP>
class BSXW02FaceAveragingSubdivision : public MRScheme
{
protected:
typename PFP::MAP& m_map ;
typename PFP::TVEC3& m_position ;
public:
BSXW02FaceAveragingSubdivision(typename PFP::MAP& m, typename PFP::TVEC3& p) : m_map(m), m_position(p)
{}
void operator() ()
{
TraversorF<typename PFP::MAP> trav(m_map) ;
for (Dart ditE = trav.begin(); ditE != trav.end(); ditE = trav.next())
{
if(m_map.isBoundaryFace(ditE))
{
Dart
midV
=
m_map
.
phi_1
(
m_map
.
phi2
(
m_map
.
phi1
(
d
)));
m_position
[
midV
]
=
p
;
Dart db = m_map.phi3(ditE);
m_map.incCurrentLevel() ;
if(m_map.faceDegree(db) != 3)
{
db = m_map.phi2(m_map.phi1(db));
typename PFP::VEC3 P(0);
unsigned int count = 0;
Traversor2VF<typename PFP::MAP> travVF(m_map, db);
for (Dart ditVF = travVF.begin(); ditVF != travVF.end(); ditVF = travVF.next())
{
P += Algo::Geometry::faceCentroid<PFP>(m_map, ditVF, m_position);
++count;
}
P /= count;
m_position[db] = P;
}
m_map.decCurrentLevel() ;
}
}
}
};
template <typename PFP>
class BSXW02VolumeAveragingSubdivision : public MRScheme
{
protected:
typename PFP::MAP& m_map ;
typename PFP::TVEC3& m_position ;
public:
BSXW02VolumeAveragingSubdivision(typename PFP::MAP& m, typename PFP::TVEC3& p) : m_map(m), m_position(p)
{}
void operator() ()
{
TraversorW<typename PFP::MAP> trav(m_map) ;
for (Dart ditE = trav.begin(); ditE != trav.end(); ditE = trav.next())
{
m_map.incCurrentLevel() ;
if(!m_map.isTetrahedron(ditE))
{
Dart midV = m_map.phi_1(m_map.phi2(m_map.phi1(ditE)));
typename PFP::VEC3 P(0);
unsigned int count = 0;
Traversor3VW<typename PFP::MAP> travVF(m_map, midV);
for (Dart ditVF = travVF.begin(); ditVF != travVF.end(); ditVF = travVF.next())
{
P += Algo::Geometry::volumeCentroid<PFP>(m_map, ditVF, m_position);
++count;
}
P /= count;
m_position[midV] = P;
}
m_map.decCurrentLevel() ;
}
}
};
/* DHL93 on Boundary Vertices and MCQ04 on Insides Vertices
*********************************************************************************/
template <typename PFP>
class
BSXW02FaceSubdivision
:
public
MRScheme
class
MCQ04VertexSubdivision
: public MRScheme
{
protected:
typename PFP::MAP& m_map ;
typename PFP::TVEC3& m_position ;
public:
BSXW02Face
Subdivision
(
typename
PFP
::
MAP
&
m
,
typename
PFP
::
TVEC3
&
p
)
:
m_map
(
m
),
m_position
(
p
)
MCQ04Vertex
Subdivision(typename PFP::MAP& m, typename PFP::TVEC3& p) : m_map(m), m_position(p)
{}
void operator() ()
{
Traversor
W
<
typename
PFP
::
MAP
>
trav
(
m_map
)
;
Traversor
V
<typename PFP::MAP> trav(m_map) ;
for (Dart d = trav.begin(); d != trav.end(); d = trav.next())
{
//cell points : these points are the average of the
//vertices of the lattice that bound the cell
typename
PFP
::
VEC3
p
=
Algo
::
Geometry
::
volumeCentroid
<
PFP
>
(
m_map
,
d
,
m_position
);
typename PFP::VEC3 p = m_position[d];
m_map.incCurrentLevel() ;
m_position[d] = p ;
m_map.decCurrentLevel() ;
}
}
} ;
if
(
!
m_map
.
isTetrahedron
(
d
))
template <typename PFP>
class MCQ04EdgeSubdivision : public MRScheme
{
protected:
typename PFP::MAP& m_map ;
typename PFP::TVEC3& m_position ;
public:
MCQ04EdgeSubdivision(typename PFP::MAP& m, typename PFP::TVEC3& p) : m_map(m), m_position(p)
{}
void operator() ()
{
typename PFP::REAL omega = 1.0/16.0;
TraversorE<typename PFP::MAP> trav(m_map) ;
for (Dart ditE = trav.begin(); ditE != trav.end(); ditE = trav.next())
{
if(m_map.isBoundaryEdge(ditE))
{
Dart
midV
=
m_map
.
phi_1
(
m_map
.
phi2
(
m_map
.
phi1
(
d
)));
Dart db = m_map.findBoundaryFaceOfEdge(ditE);
typename PFP::VEC3 p = (m_position[db] + m_position[m_map.phi2(db)]) * typename PFP::REAL(0.5);
m_map.incCurrentLevel() ;
Dart midV = m_map.phi2(db) ;
m_position[midV] = p ;
m_map.decCurrentLevel() ;
}
else
{
typename PFP::VEC3 P = ( m_position[ditE] + m_position[m_map.phi2(ditE)] ) * typename PFP::REAL(0.5);
m_map
.
decCurrentLevel
()
;
typename PFP::VEC3 Q(0);
typename PFP::VEC3 R(0);
unsigned int count = 0;
Dart dit = ditE;
do
{
Dart d_1 = m_map.phi_1(dit);
Dart d11 = m_map.phi1(m_map.phi1(dit));
Q += m_position[d_1];
Q += m_position[d11];
++count;
Dart dr1 = m_map.phi1(m_map.phi1(m_map.alpha2(d_1)));
R += m_position[dr1];
Dart dr2 = m_map.phi1(m_map.phi1(m_map.alpha2(m_map.phi1(dit))));
R += m_position[dr2];
dit = m_map.alpha2(dit);
}while(dit != ditE);
Q *= (omega / count);
R *= (omega / count);
m_map.incCurrentLevel() ;
Dart midV = m_map.phi2(ditE);
m_position[midV] = P + Q - R;
m_map.decCurrentLevel() ;
}
}
}
};
template <typename PFP>
class
BSXW02Volum
eSubdivision
:
public
MRScheme
class
MCQ04Fac
eSubdivision : public MRScheme
{
protected:
typename PFP::MAP& m_map ;
typename PFP::TVEC3& m_position ;
public:
BSXW02Volum
eSubdivision
(
typename
PFP
::
MAP
&
m
,
typename
PFP
::
TVEC3
&
p
)
:
m_map
(
m
),
m_position
(
p
)
MCQ04Fac
eSubdivision(typename PFP::MAP& m, typename PFP::TVEC3& p) : m_map(m), m_position(p)
{}
void operator() ()
{
TraversorW
<
typename
PFP
::
MAP
>
trav
(
m_map
)
;
for
(
Dart
d
=
trav
.
begin
();
d
!=
trav
.
end
();
d
=
trav
.
next
())
typename PFP::REAL omega = 1.0/16.0;
TraversorF<typename PFP::MAP> trav(m_map) ;
for (Dart ditF = trav.begin(); ditF != trav.end(); ditF = trav.next())
{
//cell points : these points are the average of the
//vertices of the lattice that bound the cell
typename
PFP
::
VEC3
p
=
Algo
::
Geometry
::
volumeCentroid
<
PFP
>
(
m_map
,
d
,
m_position
);
if(m_map.isBoundaryFace(ditF))
{
typename PFP::VEC3 p = Algo::Geometry::faceCentroid<PFP>(m_map, ditF
, m_position);
m_map
.
incCurrentLevel
()
;
m_map.incCurrentLevel() ;
if(m_map.faceDegree(ditF) != 3)
{
Dart midF = m_map.phi2(m_map.phi1(ditF));
m_position[midF] = p ;
}
m_map.decCurrentLevel() ;
if
(
!
m_map
.
isTetrahedron
(
d
))
}
else
{
Dart
midV
=
m_map
.
phi_1
(
m_map
.
phi2
(
m_map
.
phi1
(
d
)));
m_position
[
midV
]
=
p
;
//Calcul des Pi
typename PFP::VEC3 P(0);
CellMarker mv(m_map, VERTEX);
Traversor3FV<typename PFP::MAP> travFV(m_map, ditF);
for (Dart ditFV = travFV.begin(); ditFV != travFV.end(); ditFV = travFV.next())
{
P += m_position[ditFV];
mv.mark(ditFV);
}
P *= (2.0 * omega + 1) / 4.0;
//Calcul des Qi
typename PFP::VEC3 Q(0);
Traversor3FW<typename PFP::MAP> travFW(m_map, ditF);
for (Dart ditFW = travFW.begin(); ditFW != travFW.end(); ditFW = travFW.next())
{
Traversor3WV<typename PFP::MAP> travWV(m_map, ditFW);
for(Dart ditFV = travWV.begin() ; ditFV != travWV.end() ; ditFV = travWV.next())
{
if(!mv.isMarked(ditFV))
{
Q += m_position[ditFV];
mv.mark(ditFV);
}
}
}
Q *= omega / 4.0;
//Calcul des Ri
typename PFP::VEC3 R(0);
Traversor3FFaE<typename PFP::MAP> travFFaE(m_map, ditF);
for (Dart ditFFaE = travFFaE.begin(); ditFFaE != travFFaE.end(); ditFFaE = travFFaE.next())
{
Traversor3FV<typename PFP::MAP> travFV(m_map, ditFFaE);
for (Dart ditFV = travFV.begin(); ditFV != travFV.end(); ditFV = travFV.next())
{
if(!mv.isMarked(ditFV))
{
R += m_position[ditFV];
mv.mark(ditFV);
}
}
}
R *= omega / 4.0;
//Calcul des Si
typename PFP::VEC3 S(0);
Traversor3FFaV<typename PFP::MAP> travFFaV(m_map, ditF);
for (Dart ditFFaV = travFFaV.begin(); ditFFaV != travFFaV.end(); ditFFaV = travFFaV.next())
{
Traversor3FV<typename PFP::MAP> travFV(m_map, ditFFaV);
for (Dart ditFV = travFV.begin(); ditFV != travFV.end(); ditFV = travFV.next())
{
if(!mv.isMarked(ditFV))
{
S += m_position[ditFV];
mv.mark(ditFV);
}
}
}
S *= omega / 8.0;
m_map.incCurrentLevel() ;
if(m_map.faceDegree(ditF) != 3)
{
Dart midF = m_map.phi2(m_map.phi1(ditF));
m_position[midF] = P + Q - R - S ;
}
m_map.decCurrentLevel() ;
}
}
}
};
m_map
.
decCurrentLevel
()
;
template <typename PFP>
class MCQ04VolumeSubdivision : public MRScheme
{
protected:
typename PFP::MAP& m_map ;
typename PFP::TVEC3& m_position ;
public:
MCQ04VolumeSubdivision(typename PFP::MAP& m, typename PFP::TVEC3& p) : m_map(m), m_position(p)
{}
void operator() ()
{
typename PFP::REAL omega = 1.0/16.0;
TraversorW<typename PFP::MAP> trav(m_map) ;
for (Dart ditW = trav.begin(); ditW != trav.end(); ditW = trav.next())
{
if(m_map.isBoundaryVolume(ditW))
{
typename PFP::VEC3 p = Algo::Geometry::volumeCentroid<PFP>(m_map, ditW, m_position);
m_map.incCurrentLevel() ;
if(!m_map.isTetrahedron(ditW))
{
Dart midV = m_map.phi_1(m_map.phi2(m_map.phi1(ditW)));
m_position[midV] = p ;
}
m_map.decCurrentLevel() ;
}
else
{
CellMarker mv(m_map, VERTEX);
typename PFP::VEC3 P(0);
Traversor3WV<typename PFP::MAP> travWV(m_map, ditW);
for(Dart ditWV = travWV.begin() ; ditWV != travWV.end() ; ditWV = travWV.next())
{
P += m_position[ditWV];
mv.mark(ditWV);
}
P *= ((6.0 * omega + 1.0) / 8.0);