PrimitivePositioning.cpp 18.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
/*
 This file is part of the VRender library.
 Copyright (C) 2005 Cyril Soler (Cyril.Soler@imag.fr)
 Version 1.0.0, released on June 27, 2005.

 http://artis.imag.fr/Members/Cyril.Soler/VRender

 VRender is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 VRender is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with VRender; if not, write to the Free Software Foundation, Inc.,
 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
*/

/****************************************************************************

 Copyright (C) 2002-2014 Gilles Debunne. All rights reserved.

 This file is part of the QGLViewer library version 2.6.1.

 http://www.libqglviewer.com - contact@libqglviewer.com

 This file may be used under the terms of the GNU General Public License 
 versions 2.0 or 3.0 as published by the Free Software Foundation and
 appearing in the LICENSE file included in the packaging of this file.
 In addition, as a special exception, Gilles Debunne gives you certain 
 additional rights, described in the file GPL_EXCEPTION in this package.

 libQGLViewer uses dual licensing. Commercial/proprietary software must
 purchase a libQGLViewer Commercial License.

 This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

*****************************************************************************/

#include "Primitive.h"
#include "AxisAlignedBox.h"
#include "PrimitivePositioning.h"
#include "math.h"
#include <algorithm>
#include "Vector2.h"

#include <algorithm>

using namespace vrender ;
using namespace std ;

#define DEBUG_TS

double PrimitivePositioning::_EPS = 0.00001 ;

// Computes relative position of the second primitive toward the first.
// As a general rule, the smaller the Z of a primitive, the Upper the primitive.

int PrimitivePositioning::computeRelativePosition(const Primitive *p1,const Primitive *p2)
{
	AxisAlignedBox_xyz bb1(p1->bbox()) ;
	AxisAlignedBox_xyz bb2(p2->bbox()) ;

	// 1 - check if bounding boxes are disjoint. In such a case, a rapid answer is possible.

	if( bb1.maxi().x() < bb2.mini().x() || bb1.mini().x() > bb2.maxi().x()) return Independent ;
	if( bb1.maxi().y() < bb2.mini().y() || bb1.mini().y() > bb2.maxi().y()) return Independent ;

	// 2 - call specific tests for each case.

	if(p1->nbVertices() >= 3)
		if(p2->nbVertices() >= 3)
			return computeRelativePosition( dynamic_cast<const Polygone *>(p1),dynamic_cast<const Polygone *>(p2)) ;
		else if(p2->nbVertices() == 2) // Case of a segment versus a polygon
			return computeRelativePosition( dynamic_cast<const Polygone *>(p1),dynamic_cast<const Segment *>(p2)) ;
		else
			return computeRelativePosition( dynamic_cast<const Polygone *>(p1),dynamic_cast<const Point *>(p2)) ;
	else if(p1->nbVertices() == 2)
		if(p2->nbVertices() >= 3)
			return inverseRP(computeRelativePosition( dynamic_cast<const Polygone *>(p2),dynamic_cast<const Segment *>(p1))) ;
		else if(p2->nbVertices() == 2)
			return computeRelativePosition( dynamic_cast<const Segment *>(p1),dynamic_cast<const Segment *>(p2)) ;
		else
			return Independent ;	// segment vs point => independent
	else
		if(p2->nbVertices() >= 3)
			return inverseRP(computeRelativePosition( dynamic_cast<const Polygone *>(p2),dynamic_cast<const Point *>(p1))) ;
		else if(p2->nbVertices() == 2)
			return Independent ;	// point vs segment => independent
		else
			return Independent ;	// point vs point => independent
}

// Computes the relative position of the point toward a *convex* polygon.

int PrimitivePositioning::computeRelativePosition(const Polygone *Q,const Point *P)
{
	if(pointOutOfPolygon_XY(P->vertex(0),Q,(double)_EPS)) // On met un eps > 0, pour que les
		return Independent ;							 // points du bords soient inclus dans le polygone.

	// now compute the relative position of the point toward the polygon

	if(Q->equation(P->vertex(0)) >= 0)
		return Upper ;
	else
		return Lower ;
}

// Computes the relative position of the segment toward a *convex* polygon.

int PrimitivePositioning::computeRelativePosition(const Polygone *P,const Segment *S)
{
	//  Computes the intersection of the segment and the polygon in 2D, then
	// project the extremities of the intersection onto the segment, and compare
	// the points to the polygon.

	// 1 - 2D-intersection of segment and polygon

	vector<double> intersections ;

	if(!pointOutOfPolygon_XY(S->vertex(0),P,_EPS)) intersections.push_back(0.0);
	if(!pointOutOfPolygon_XY(S->vertex(1),P,_EPS)) intersections.push_back(1.0);

	double t1,t2 ;

		for(size_t i=0;i<P->nbVertices();++i)
		if(intersectSegments_XY(Vector2(S->vertex(0)),Vector2(S->vertex(1)),Vector2(P->vertex(i)),Vector2(P->vertex(i+1)),_EPS,t1,t2))
			intersections.push_back(t1) ;

	// 2 - Checks wether the intersection segment is reduced to a point. In this case,
	// 	both primitives are independent.

	double tmin = FLT_MAX ;
	double tmax = -FLT_MAX ;

	for(unsigned int j=0;j<intersections.size();++j)
	{
		tmin = std::min(tmin,intersections[j]) ;
		tmax = std::max(tmax,intersections[j]) ;
	}

	if(tmax - tmin < 2*_EPS)
		return Independent ;

	// 3 - The intersection segment is not reduced to a point. Compares 3D
	//   projections of the intersections with the plane of the polygon.

	int res = Independent ;

	for(unsigned int k=0;k<intersections.size();++k)
	{
		Vector3 v( (1-intersections[k])*S->vertex(0) + intersections[k]*S->vertex(1) ) ;

		if(P->equation(v) < -_EPS) res |= Lower ;
		if(P->equation(v) >  _EPS) res |= Upper ;
	}

	if(intersections.size() > 1 && res == Independent)	// case of segments tangent to the polygon
		res = Upper ;

	return res ;
}

// Computes the relative position of a polygon toward a convex polygon.

int PrimitivePositioning::computeRelativePosition(const Polygone *P1,const Polygone *P2)
{
	// 1 - use gpc to conservatively check for intersection. This works fine because
	//    gpc produces a null intersection for polygons sharing an edge, which
	//    is exactly what we need.

	gpc_polygon gpc_int ;

	try
	{
		gpc_polygon gpc_p1 = createGPCPolygon_XY(P1) ;
		gpc_polygon gpc_p2 = createGPCPolygon_XY(P2) ;

		gpc_polygon_clip(GPC_INT,&gpc_p1,&gpc_p2,&gpc_int) ;

		gpc_free_polygon(&gpc_p1) ;
		gpc_free_polygon(&gpc_p2) ;
	}
	catch(exception&)
	{
		return Independent ;				// no free, because we don't really now what happenned.
	}

	int res = Independent ;

	if (gpc_int.num_contours != 1) // There is some numerical error in gpc. Let's skip.
	  {
		gpc_free_polygon(&gpc_int) ;
		return res ;
		// throw runtime_error("Intersection with more than 1 contour ! Non convex polygons ?") ;
	  }

	// 2 - polygons are not independent. Compute their relative position.
	//    For this, we project the vertices of the 2D intersection onto the
	//   support plane of each polygon. The epsilon-signs of each point toward
	//   both planes give the relative position of the polygons.

	for(long i=0;i<gpc_int.contour[0].num_vertices && (res < (Upper | Lower));++i)
	{
		if(P1->normal().z() == 0.0) throw runtime_error("could not project point. Unexpected case !") ;
		if(P2->normal().z() == 0.0) throw runtime_error("could not project point. Unexpected case !") ;

		// project point onto support planes

		double f1 = P1->normal().x() * gpc_int.contour[0].vertex[i].x + P1->normal().y() * gpc_int.contour[0].vertex[i].y - P1->c() ;
		double f2 = P2->normal().x() * gpc_int.contour[0].vertex[i].x + P2->normal().y() * gpc_int.contour[0].vertex[i].y - P2->c() ;

		Vector3 v1(gpc_int.contour[0].vertex[i].x,gpc_int.contour[0].vertex[i].y, -f1/P1->normal().z()) ;
		Vector3 v2(gpc_int.contour[0].vertex[i].x,gpc_int.contour[0].vertex[i].y, -f2/P2->normal().z()) ;

		if(P1->equation(v2) < -_EPS) res |= Lower ;
		if(P1->equation(v2) >  _EPS) res |= Upper ;
		if(P2->equation(v1) < -_EPS) res |= Upper ;
		if(P2->equation(v1) >  _EPS) res |= Lower ;
	}
	gpc_free_polygon(&gpc_int) ;
	return res ;
}

// Computes the relative position of a segment toward another segment.

int PrimitivePositioning::computeRelativePosition(const Segment *S1,const Segment *S2)
{
	double t1,t2 ;

	if(!intersectSegments_XY(	Vector2(S1->vertex(0)),Vector2(S1->vertex(1)),
										Vector2(S2->vertex(0)),Vector2(S2->vertex(1)),
										-(double)_EPS,t1,t2 ))
		return Independent ;
	else
	{
		double z1 = (1.0 - t1)*S1->vertex(0).z() + t1*S1->vertex(1).z() ;
		double z2 = (1.0 - t2)*S2->vertex(0).z() + t2*S2->vertex(1).z() ;

		if(z1 <= z2)
			return Lower ;
		else
			return Upper ;
	}
}


// Teste si le point est exterieur au polygone (convexe). Plus I_EPS est grand
// plus il faut etre loin pour que ca soit vrai. EPS=0 correspond au polygone
// lui-meme bords inclus. Pour EPS<0, des points interieurs pres de la frontiere sont
// declares exterieurs.  Plus I_EPS est grand, plus l'ensemble des points
// consideres comme interieur est dilate.

bool PrimitivePositioning::pointOutOfPolygon_XY(const Vector3& P,const Polygone *Q,double I_EPS)
{
	size_t nq = Q->nbVertices() ;
	Vector2 p = Vector2(P) ;

	FLOAT MaxZ = -FLT_MAX ;
	FLOAT MinZ =  FLT_MAX ;

	for(size_t j=0;j<nq;j++)  				//  Regarde si P.(x,y) est a l'interieur
	{                               	// ou a l'exterieur du polygone.
		Vector2 q1 = Vector2(Q->vertex(j)) ;
		Vector2 q2 = Vector2(Q->vertex(j+1)) ;

		double Z = (q1-p)^(q2-p) ;

		MinZ = std::min(Z,MinZ) ;
		MaxZ = std::max(Z,MaxZ) ;
	}

	if((MaxZ <= -I_EPS*I_EPS)||(MinZ >= I_EPS*I_EPS))	// the point is inside the polygon
		return false ;
	else
		return true ;
}

int PrimitivePositioning::inverseRP(int pos)
{
	// Basically switch bits of Lower and Upper

	switch(pos)
	{
		case Independent: return Independent ;
		case Lower: return Upper ;
		case Upper: return Lower ;
		case Upper | Lower: return Upper | Lower ;
		default:
								  throw runtime_error("Unexpected value.") ;
								  return pos ;
	}
}

// Calcule l'intersection des segments [P1,Q1] et [P2,Q2]
// En retour, (1-t1,t1) et (1-t2,t2) sont les coordonnees
// barycentriques de l'intersection dans chaque segment.

bool PrimitivePositioning::intersectSegments_XY(const Vector2& P1,const Vector2& Q1,
																const Vector2& P2,const Vector2& Q2,
																double I_EPS,
																double & t1,double & t2)
{
	double P1x(P1.x()) ;
	double P1y(P1.y()) ;
	double P2x(P2.x()) ;
	double P2y(P2.y()) ;
	double Q1x(Q1.x()) ;
	double Q1y(Q1.y()) ;
	double Q2x(Q2.x()) ;
	double Q2y(Q2.y()) ;

	double a2 = -(Q2y - P2y) ;
	double b2 =  (Q2x - P2x) ;
	double c2 =  P2x*a2+P2y*b2 ;

	double a1 = -(Q1y - P1y) ;
	double b1 =  (Q1x - P1x) ;
	double c1 =  P1x*a1+P1y*b1 ;

	double d2 = a2*(Q1x-P1x)+b2*(Q1y-P1y) ;
	double d1 = a1*(Q2x-P2x)+b1*(Q2y-P2y) ;

	if((fabs(d2) <= fabs(I_EPS))||(fabs(d1) <= fabs(I_EPS)))	// les segments sont paralleles
	{
		if(fabs(a2*P1x + b2*P1y - c2) >= I_EPS)
			return false ;

		double tP1,tQ1 ;

		if(P1x != Q1x)
		{
			tP1 = (P2x-P1x)/(Q1x-P1x) ;
			tQ1 = (Q2x-P1x)/(Q1x-P1x) ;
		}
		else if(P1y != Q1y)
		{
			tP1 = (P2y-P1y)/(Q1y-P1y) ;
			tQ1 = (Q2y-P1y)/(Q1y-P1y) ;
		}
		else
		{
#ifdef DEBUG_TS
			printf("IntersectSegments2D:: Error ! One segment has length 0\n") ;
			printf("This special case is not treated yet.\n") ;
#endif
			return false ;
		}

		double tPQM = std::max(tP1,tQ1) ;
		double tPQm = std::min(tP1,tQ1) ;

		if(( tPQM < -I_EPS) || (tPQm > 1.0+I_EPS))
			return false ;

		if(tPQm > 0.0)
		{
			t1 = tPQm ;
			t2 = 0.0 ;
		}
		else
		{
			t1 = 0.0 ;
			if(P2x != Q2x)
				t2 = (P1x-P2x)/(Q2x-P2x) ;
			else if(P2y != Q2y)
				t2 = (P1y-P2y)/(Q2y-P2y) ;
			else
			{
#ifdef DEBUG_TS
				printf("IntersectSegments2D:: Error ! One segment has length 0\n") ;
				printf("This special case is not treated yet.\n") ;
#endif
				return false ;
			}
		}

		return true ;
	}
	else
	{
		t2 = (c1 - a1*P2x - b1*P2y)/d1 ;
		t1 = (c2 - a2*P1x - b2*P1y)/d2 ;

		if((t2 > 1+I_EPS)||(t2 < -I_EPS)||(t1 > 1+I_EPS)||(t1 < -I_EPS))
			return false ;

		return true ;
	}
}

gpc_polygon PrimitivePositioning::createGPCPolygon_XY(const Polygone *P)
{
	gpc_polygon p ;

	p.num_contours = 0 ;
	p.hole = NULL ;
	p.contour = NULL ;

	gpc_vertex_list *gpc_p_verts = new gpc_vertex_list ;

407
	gpc_p_verts->num_vertices = long(P->nbVertices()) ;
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
	gpc_p_verts->vertex = new gpc_vertex[P->nbVertices()] ;

		for(size_t i=0;i<P->nbVertices();++i)
	{
		gpc_p_verts->vertex[i].x = P->vertex(i).x() ;
		gpc_p_verts->vertex[i].y = P->vertex(i).y() ;
	}

	gpc_add_contour(&p,gpc_p_verts,false) ;

	return p ;
}

void PrimitivePositioning::getsigns(const Primitive *P,const NVector3& v,double C,
												vector<int>& signs,vector<double>& zvals,int& Smin,int& Smax,double I_EPS)
{
	if(P == NULL)
		throw runtime_error("Null primitive in getsigns !") ;

	size_t n = P->nbVertices() ;

	Smin =  1 ;
	Smax = -1 ;

	// On classe les sommets en fonction de leur signe

	double zmax = -FLT_MAX ;
	double zmin =  FLT_MAX ;
	zvals.resize(n) ;

	for(size_t i=0;i<n;i++)
	{
		double Z = P->vertex(i) * v - C ;

		if(Z > zmax) zmax = Z ;
		if(Z < zmin) zmin = Z ;

		zvals[i] = Z ;
	}

	signs.resize(n) ;

	for(size_t j=0;j<n;j++)
	{
		if(zvals[j] < -I_EPS)
			signs[j] = -1 ;
		else if(zvals[j] > I_EPS)
			signs[j] = 1 ;
		else
			signs[j] = 0 ;

		if(Smin > signs[j]) Smin = signs[j] ;
		if(Smax < signs[j]) Smax = signs[j] ;
	}
}

void PrimitivePositioning::split(Polygone *P,const NVector3& v,double C,Primitive *& P_plus,Primitive *& P_moins)
{
	vector<int> Signs ;
	vector<double> Zvals ;

	P_plus = NULL ;
	P_moins = NULL ;

	int Smin = 1 ;
	int Smax = -1 ;

	getsigns(P,v,C,Signs,Zvals,Smin,Smax,_EPS) ;

	size_t n = P->nbVertices() ;

	if((Smin == 0)&&(Smax == 0)){ P_moins = P ; P_plus = NULL ; return ; }	// Polygone inclus dans le plan
	if(Smin == 1) 					{ P_plus = P ; P_moins = NULL ; return ; }	// Polygone tout positif
	if(Smax == -1) 					{ P_plus = NULL ; P_moins = P ; return ; }	// Polygone tout negatif

	if((Smin == -1)&&(Smax == 0)) { P_plus = NULL ; P_moins = P ; return ; }	// Polygone tout negatif ou null
	if((Smin == 0)&&(Smax == 1))  { P_plus = P ; P_moins = NULL ; return ; }	// Polygone tout positif ou null

	// Reste le cas Smin = -1 et Smax = 1. Il faut couper

	vector<Feedback3DColor> Ps ;
	vector<Feedback3DColor> Ms ;

	// On teste la coherence des signes.

	int nZero = 0 ;
	int nconsZero = 0 ;

	for(size_t i=0;i<n;i++)
	{
		if(Signs[i] == 0)
		{
			nZero++ ;

			if(Signs[(i+1)%n] == 0)
				nconsZero++ ;
		}
	}

	// Ils y a des imprecisions numeriques dues au fait que le poly estpres du plan.
	if((nZero > 2)||(nconsZero > 0)) { P_moins = P ; P_plus  = NULL ; return ; }

	int dep=0 ; while(Signs[dep] == 0) dep++ ;
	int prev_sign = Signs[dep] ;

	for(size_t j=1;j<=n;j++)
	{
		int sign = Signs[(j+dep)%n] ;

		if(sign == prev_sign)
		{
			if(sign ==  1) Ps.push_back(P->sommet3DColor(j+dep)) ;
			if(sign == -1) Ms.push_back(P->sommet3DColor(j+dep)) ;
		}
		else if(sign == -prev_sign)
		{
			//  Il faut effectuer le calcul en utilisant les memes valeurs que pour le calcul des signes,
			// sinon on risque des incoherences dues aux imprecisions numeriques.

			double Z1 = Zvals[(j+dep-1)%n] ;
			double Z2 = Zvals[(j+dep)%n] ;

			double t = fabs(Z1/(Z2 - Z1)) ;

			if((t < 0.0)||(t > 1.0))
			{
				if(t > 1.0) t = 1.0 ;
				if(t < 0.0) t = 0.0 ;
			}
			Feedback3DColor newVertex((1-t)*P->sommet3DColor(j+dep-1) + t*P->sommet3DColor(j+dep)) ;

			Ps.push_back(newVertex) ;
			Ms.push_back(newVertex) ;

			if(sign == 1)
				Ps.push_back(P->sommet3DColor(j+dep)) ;

			if(sign == -1)
				Ms.push_back(P->sommet3DColor(j+dep)) ;

			prev_sign = sign ;
		} // prev_sign != 0 donc necessairement sign = 0. Le sommet tombe dans le plan
		else
		{
			Feedback3DColor newVertex = P->sommet3DColor(j+dep) ;

			Ps.push_back(newVertex) ;
			Ms.push_back(newVertex) ;

			prev_sign = -prev_sign ;
		}
	}

	if(Ps.size() > 100 || Ms.size() > 100 )
		printf("Primitive::split: Error. nPs = %d, nMs = %d.\n",int(Ps.size()),int(Ms.size())) ;

	// on suppose pour l'instant que les polygones sont convexes

	if(Ps.size() == 1)
		P_plus = new Point(Ps[0]) ;
	else if(Ps.size() == 2)
		P_plus = new Segment(Ps[0],Ps[1]) ;
	else
		P_plus  = new Polygone(Ps) ;

	if(Ms.size() == 1)
		P_moins = new Point(Ms[0]) ;
	else if(Ms.size() == 2)
		P_moins = new Segment(Ms[0],Ms[1]) ;
	else
		P_moins = new Polygone(Ms) ;
}

void PrimitivePositioning::split(Point *P,const NVector3& v,double C,Primitive * & P_plus,Primitive * & P_moins)
{
	if(v*P->vertex(0)-C > -_EPS)
	{
		P_plus = P ;
		P_moins = NULL ;
	}
	else
	{
		P_moins = P ;
		P_plus = NULL ;
	}
}

void PrimitivePositioning::split(Segment *S,const NVector3& v,double C,Primitive * & P_plus,Primitive * & P_moins)
{
	vector<int> Signs ;
	vector<double> Zvals ;

	P_plus = NULL ;
	P_moins = NULL ;

	int Smin = 1 ;
	int Smax = -1 ;

	getsigns(S,v,C,Signs,Zvals,Smin,Smax,_EPS) ;

	size_t n = S->nbVertices() ;

	if((Smin == 0)&&(Smax == 0)) 	{ P_moins = S ; P_plus = NULL ; return ; }	// Polygone inclus dans le plan
	if(Smin == 1) 						{ P_plus = S ; P_moins = NULL ; return ; }	// Polygone tout positif
	if(Smax == -1) 					{ P_plus = NULL ; P_moins = S ; return ; }	// Polygone tout negatif

	if((Smin == -1)&&(Smax == 0)) { P_plus = NULL ; P_moins = S ; return ; }	// Polygone tout negatif ou null
	if((Smin == 0)&&(Smax == 1))  { P_plus = S ; P_moins = NULL ; return ; }	// Polygone tout positif ou null

	// Reste le cas Smin = -1 et Smax = 1. Il faut couper
	// On teste la coherence des signes.

	int nZero = 0 ;
	int nconsZero = 0 ;

	for(size_t i=0;i<n;i++)
	{
		if(Signs[i] == 0)
		{
			nZero++ ;

			if(Signs[(i+1)%n] == 0)
				nconsZero++ ;
		}
	}

	// Ils y a des imprecisions numeriques dues au fait que le poly estpres du plan.
	if((nZero > 2)||(nconsZero > 0)) { P_moins = S ; P_plus  = NULL ; return ; }

	double Z1 = Zvals[0] ;
	double Z2 = Zvals[1] ;

	double t = fabs(Z1/(Z2 - Z1)) ;

	if((t < 0.0)||(t > 1.0))
	{
		if(t > 1.0) t = 1.0 ;
		if(t < 0.0) t = 0.0 ;
	}

	Feedback3DColor newVertex = S->sommet3DColor(0) * (1-t) + S->sommet3DColor(1) * t ;

	if(Signs[0] < 0)
	{
		P_plus = new Segment(newVertex,S->sommet3DColor(1)) ;
		P_moins = new Segment(S->sommet3DColor(0),newVertex) ;
	}
	else
	{
		P_plus = new Segment(S->sommet3DColor(0),newVertex) ;
		P_moins = new Segment(newVertex,S->sommet3DColor(1)) ;
	}
}

// splits primitive P by plane of equation v.X=c. The upper part is setup in a new primitive called prim_up and
// the lower part is in prim_lo.

void PrimitivePositioning::splitPrimitive(Primitive *P,const NVector3& v,double c, Primitive *& prim_up,Primitive *& prim_lo)
{
	Polygone *p1 = dynamic_cast<Polygone *>(P) ; if(p1 != NULL) PrimitivePositioning::split(p1,v,c,prim_up,prim_lo) ;
	Segment  *p2 = dynamic_cast<Segment  *>(P) ; if(p2 != NULL) PrimitivePositioning::split(p2,v,c,prim_up,prim_lo) ;
	Point    *p3 = dynamic_cast<Point    *>(P) ; if(p3 != NULL) PrimitivePositioning::split(p3,v,c,prim_up,prim_lo) ;
}