irrArray.h 9.66 KB
Newer Older
Pierre Kraemer's avatar
Pierre Kraemer committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
// Copyright (C) 2002-2005 Nikolaus Gebhardt
// This file is part of the "Irrlicht Engine" and the "irrXML" project.
// For conditions of distribution and use, see copyright notice in irrlicht.h and irrXML.h

#ifndef __IRR_ARRAY_H_INCLUDED__
#define __IRR_ARRAY_H_INCLUDED__

#include "irrTypes.h"
#include "heapsort.h"

namespace irr
{
namespace core
{

//!	Self reallocating template array (like stl vector) with additional features.
/** Some features are: Heap sorting, binary search methods, easier debugging.
*/
template <class T>
class array
{

public:

	array()
		: data(0), allocated(0), used(0),
			free_when_destroyed(true), is_sorted(true)
	{
	}

	//! Constructs a array and allocates an initial chunk of memory.
	//! \param start_count: Amount of elements to allocate.
	array(u32 start_count)
		: data(0), allocated(0), used(0),
			free_when_destroyed(true),	is_sorted(true)
	{
		reallocate(start_count);
	}


	//! Copy constructor
	array(const array<T>& other)
		: data(0)
	{
		*this = other;
	}



	//! Destructor. Frees allocated memory, if set_free_when_destroyed
	//! was not set to false by the user before.
	~array()
	{
		if (free_when_destroyed)
			delete [] data;
	}



	//! Reallocates the array, make it bigger or smaller.
	//! \param new_size: New size of array.
	void reallocate(u32 new_size)
	{
		T* old_data = data;

		data = new T[new_size];
		allocated = new_size;
		
		s32 end = used < new_size ? used : new_size;
		for (s32 i=0; i<end; ++i)
			data[i] = old_data[i];

		if (allocated < used)
			used = allocated;
		
		delete [] old_data;
	}

	//! Adds an element at back of array. If the array is to small to 
	//! add this new element, the array is made bigger.
	//! \param element: Element to add at the back of the array.
	void push_back(const T& element)
	{
		if (used + 1 > allocated)
		{
			// reallocate(used * 2 +1);
			// this doesn't work if the element is in the same array. So
			// we'll copy the element first to be sure we'll get no data
			// corruption

			T e;
			e = element;           // copy element
			reallocate(used * 2 +1); // increase data block
			data[used++] = e;        // push_back
			is_sorted = false; 
			return;
		}

		data[used++] = element;
		is_sorted = false;
	}


	//! Adds an element at the front of the array. If the array is to small to 
	//! add this new element, the array is made bigger. Please note that this
	//! is slow, because the whole array needs to be copied for this.
	//! \param element: Element to add at the back of the array.
	void push_front(const T& element)
	{
		if (used + 1 > allocated)
			reallocate(used * 2 +1);

		for (int i=(int)used; i>0; --i)
			data[i] = data[i-1];

		data[0] = element;
		is_sorted = false;
		++used;
	}

	
	//! Insert item into array at specified position. Please use this
	//! only if you know what you are doing (possible performance loss). 
	//! The preferred method of adding elements should be push_back().
	//! \param element: Element to be inserted
	//! \param index: Where position to insert the new element.
	void insert(const T& element, u32 index=0) 
	{
		_IRR_DEBUG_BREAK_IF(index>used) // access violation

		if (used + 1 > allocated)
			reallocate(used * 2 +1);

		for (u32 i=used++; i>index; i--) 
			data[i] = data[i-1];

		data[index] = element;
		is_sorted = false;
	}




	//! Clears the array and deletes all allocated memory.
	void clear()
	{
		delete [] data;
		data = 0;
		used = 0;
		allocated = 0;
		is_sorted = true;
	}



	//! Sets pointer to new array, using this as new workspace.
	//! \param newPointer: Pointer to new array of elements.
	//! \param size: Size of the new array.
	void set_pointer(T* newPointer, u32 size)
	{
		delete [] data;
		data = newPointer;
		allocated = size;
		used = size;
		is_sorted = false;
	}



	//! Sets if the array should delete the memory it used.
	//! \param f: If true, the array frees the allocated memory in its
	//! destructor, otherwise not. The default is true.
	void set_free_when_destroyed(bool f)
	{
		free_when_destroyed = f;
	}



	//! Sets the size of the array.
	//! \param usedNow: Amount of elements now used.
	void set_used(u32 usedNow)
	{
		if (allocated < usedNow)
			reallocate(usedNow);

		used = usedNow;
	}



	//! Assignement operator
	void operator=(const array<T>& other)
	{
		if (data)
			delete [] data;

		//if (allocated < other.allocated)
		if (other.allocated == 0)
			data = 0;
		else
			data = new T[other.allocated];

		used = other.used;
		free_when_destroyed = other.free_when_destroyed;
		is_sorted = other.is_sorted;
		allocated = other.allocated;

		for (u32 i=0; i<other.used; ++i)
			data[i] = other.data[i];
	}


	//! Direct access operator
	T& operator [](u32 index)
	{
		_IRR_DEBUG_BREAK_IF(index>=used) // access violation

		return data[index];
	}



	//! Direct access operator
	const T& operator [](u32 index) const
	{
		_IRR_DEBUG_BREAK_IF(index>=used) // access violation

		return data[index];
	}

    //! Gets last frame
	const T& getLast() const
	{
		_IRR_DEBUG_BREAK_IF(!used) // access violation

		return data[used-1];
	}

    //! Gets last frame
	T& getLast()
	{
		_IRR_DEBUG_BREAK_IF(!used) // access violation

		return data[used-1];
	}
    

	//! Returns a pointer to the array.
	//! \return Pointer to the array.
	T* pointer()
	{
		return data;
	}



	//! Returns a const pointer to the array.
	//! \return Pointer to the array.
	const T* const_pointer() const
	{
		return data;
	}



	//! Returns size of used array.
	//! \return Size of elements in the array.
	u32 size() const
	{
		return used;
	}



	//! Returns amount memory allocated.
	//! \return Returns amount of memory allocated. The amount of bytes
	//! allocated would  be allocated_size() * sizeof(ElementsUsed);
	u32 allocated_size() const
	{
		return allocated;
	}



	//! Returns true if array is empty
	//! \return True if the array is empty, false if not.
	bool empty() const
	{
		return used == 0;
	}



	//! Sorts the array using heapsort. There is no additional memory waste and
	//! the algorithm performs (O) n log n in worst case.
	void sort()
	{
		if (is_sorted || used<2)
			return;

		heapsort(data, used);
		is_sorted = true;
	}



	//! Performs a binary search for an element, returns -1 if not found.
	//! The array will be sorted before the binary search if it is not
	//! already sorted.
	//! \param element: Element to search for.
	//! \return Returns position of the searched element if it was found,
	//! otherwise -1 is returned.
	s32 binary_search(const T& element)
	{
		return binary_search(element, 0, used-1);
	}



	//! Performs a binary search for an element, returns -1 if not found.
	//! The array will be sorted before the binary search if it is not
	//! already sorted.
	//! \param element: Element to search for.
	//! \param left: First left index
	//! \param right: Last right index.
	//! \return Returns position of the searched element if it was found,
	//! otherwise -1 is returned.
	s32 binary_search(const T& element, s32 left, s32 right)
	{
		if (!used)
			return -1;

		sort();

		s32 m;

		do
		{
			m = (left+right)>>1;

			if (element < data[m])
				right = m - 1;
			else
				left = m + 1;

		} while((element < data[m] || data[m] < element) && left<=right);

		// this last line equals to:
		// " while((element != array[m]) && left<=right);"
		// but we only want to use the '<' operator.
		// the same in next line, it is "(element == array[m])"

		if (!(element < data[m]) && !(data[m] < element))
			return m;

		return -1;
	}


	//! Finds an element in linear time, which is very slow. Use
	//! binary_search for faster finding. Only works if =operator is implemented.
	//! \param element: Element to search for.
	//! \return Returns position of the searched element if it was found,
	//! otherwise -1 is returned.
	s32 linear_search(T& element)
	{
		for (u32 i=0; i<used; ++i)
			if (!(element < data[i]) && !(data[i] < element))
				return (s32)i;

		return -1;
	}


	//! Finds an element in linear time, which is very slow. Use
	//! binary_search for faster finding. Only works if =operator is implemented.
	//! \param element: Element to search for.
	//! \return Returns position of the searched element if it was found,
	//! otherwise -1 is returned.
	s32 linear_reverse_search(T& element)
	{
		for (s32 i=used-1; i>=0; --i)
			if (data[i] == element)
				return (s32)i;

		return -1;
	}



	//! Erases an element from the array. May be slow, because all elements 
	//! following after the erased element have to be copied.
	//! \param index: Index of element to be erased.
	void erase(u32 index)
	{
		_IRR_DEBUG_BREAK_IF(index>=used || index<0) // access violation

		for (u32 i=index+1; i<used; ++i)
			data[i-1] = data[i];

		--used;
	}


	//! Erases some elements from the array. may be slow, because all elements 
	//! following after the erased element have to be copied.
	//! \param index: Index of the first element to be erased.
	//! \param count: Amount of elements to be erased.
	void erase(u32 index, s32 count)
	{
		_IRR_DEBUG_BREAK_IF(index>=used || index<0 || count<1 || index+count>used) // access violation

		for (u32 i=index+count; i<used; ++i)
			data[i-count] = data[i];

		used-= count;
	}


	//! Sets if the array is sorted
	void set_sorted(bool _is_sorted)
	{
		is_sorted = _is_sorted;
	}

			
	private:

		T* data;
		u32 allocated;
		u32 used;
		bool free_when_destroyed;
		bool is_sorted;
};


} // end namespace core
} // end namespace irr



#endif