/******************************************************************************* * CGoGN: Combinatorial and Geometric modeling with Generic N-dimensional Maps * * version 0.1 * * Copyright (C) 2009-2011, IGG Team, LSIIT, University of Strasbourg * * * * This library is free software; you can redistribute it and/or modify it * * under the terms of the GNU Lesser General Public License as published by the * * Free Software Foundation; either version 2.1 of the License, or (at your * * option) any later version. * * * * This library is distributed in the hope that it will be useful, but WITHOUT * * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License * * for more details. * * * * You should have received a copy of the GNU Lesser General Public License * * along with this library; if not, write to the Free Software Foundation, * * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * * * Web site: http://cgogn.u-strasbg.fr/ * * Contact information: cgogn@unistra.fr * * * *******************************************************************************/ #include "Geometry/basic.h" #include "Algo/Geometry/centroid.h" namespace CGoGN { namespace Algo { namespace Geometry { template typename PFP::REAL triangleArea(typename PFP::MAP& map, Dart d, const typename PFP::TVEC3& position) { typename PFP::VEC3 p1 = position[d]; typename PFP::VEC3 p2 = position[map.phi1(d)]; typename PFP::VEC3 p3 = position[map.phi_1(d)]; return Geom::triangleArea(p1, p2, p3) ; } template typename PFP::REAL convexFaceArea(typename PFP::MAP& map, Dart d, const typename PFP::TVEC3& position) { typedef typename PFP::VEC3 VEC3; if(map.isFaceTriangle(d)) return triangleArea(map, d, position) ; else { float area = 0.0f ; VEC3 centroid = Algo::Geometry::faceCentroid(map, d, position) ; Dart it = d ; do { VEC3 p1 = position[it]; VEC3 p2 = position[map.phi1(it)]; area += Geom::triangleArea(p1, p2, centroid) ; it = map.phi1(it) ; } while (it != d) ; return area ; } } template typename PFP::REAL totalArea(typename PFP::MAP& map, const typename PFP::TVEC3& position, const FunctorSelect& select, unsigned int th) { typename PFP::REAL area(0) ; DartMarker mark(map,th) ; for(Dart d = map.begin(); d != map.end(); map.next(d)) { if(select(d) && !mark.isMarked(d)) { mark.markOrbit(FACE, d) ; area += convexFaceArea(map, d, position) ; } } return area ; } template typename PFP::REAL vertexOneRingArea(typename PFP::MAP& map, Dart d, const typename PFP::TVEC3& position) { typename PFP::REAL area(0) ; Dart it = d ; do { area += convexFaceArea(map, it, position) ; it = map.alpha1(it) ; } while(it != d) ; return area ; } template typename PFP::REAL vertexBarycentricArea(typename PFP::MAP& map, Dart d, const typename PFP::TVEC3& position) { typename PFP::REAL area(0) ; Dart it = d ; do { area += convexFaceArea(map, it, position) / 3 ; it = map.alpha1(it) ; } while(it != d) ; return area ; } template typename PFP::REAL vertexVoronoiArea(typename PFP::MAP& map, Dart d, const typename PFP::TVEC3& position) { typename PFP::REAL area(0) ; Dart it = d ; do { if(!isTriangleObtuse(map, it, position)) { typename PFP::REAL a = angle(map, map.phi1(it), map.phi2(it), position) ; typename PFP::REAL b = angle(map, map.phi_1(it), map.phi2(map.phi1(it)), position) ; area += (vectorOutOfDart(map, it, position).norm2() / tan(a) + vectorOutOfDart(map, map.phi_1(it), position).norm2() / tan(b)) / 8 ; } else { typename PFP::REAL tArea = convexFaceArea(map, it, position) ; if(angle(map, it, map.phi2(map.phi_1(it)), position) > M_PI / 2) area += tArea / 2 ; else area += tArea / 4 ; } it = map.alpha1(it) ; } while(it != d) ; return area ; } template void computeAreaFaces(typename PFP::MAP& map, const typename PFP::TVEC3& position, typename PFP::TREAL& face_area, const FunctorSelect& select) { CellMarker marker(map, FACE); for(Dart d = map.begin(); d != map.end(); map.next(d)) { if(select(d) && !marker.isMarked(d)) { marker.mark(d); face_area[d] = convexFaceArea(map, d, position) ; } } } template void computeOneRingAreaVertices(typename PFP::MAP& map, const typename PFP::TVEC3& position, typename PFP::TREAL& vertex_area, const FunctorSelect& select) { CellMarker marker(map, VERTEX); for(Dart d = map.begin(); d != map.end(); map.next(d)) { if(select(d) && !marker.isMarked(d)) { marker.mark(d); vertex_area[d] = vertexOneRingArea(map, d, position) ; } } } template void computeBarycentricAreaVertices(typename PFP::MAP& map, const typename PFP::TVEC3& position, typename PFP::TREAL& vertex_area, const FunctorSelect& select) { CellMarker marker(map, VERTEX); for(Dart d = map.begin(); d != map.end(); map.next(d)) { if(select(d) && !marker.isMarked(d)) { marker.mark(d); vertex_area[d] = vertexBarycentricArea(map, d, position) ; } } } template void computeVoronoiAreaVertices(typename PFP::MAP& map, const typename PFP::TVEC3& position, typename PFP::TREAL& vertex_area, const FunctorSelect& select) { CellMarker marker(map, VERTEX); for(Dart d = map.begin(); d != map.end(); map.next(d)) { if(select(d) && !marker.isMarked(d)) { marker.mark(d); vertex_area[d] = vertexVoronoiArea(map, d, position) ; } } } } // namespace Geometry } // namespace Algo } // namespace CGoGN