/******************************************************************************* * CGoGN: Combinatorial and Geometric modeling with Generic N-dimensional Maps * * version 0.1 * * Copyright (C) 2009-2012, IGG Team, LSIIT, University of Strasbourg * * * * This library is free software; you can redistribute it and/or modify it * * under the terms of the GNU Lesser General Public License as published by the * * Free Software Foundation; either version 2.1 of the License, or (at your * * option) any later version. * * * * This library is distributed in the hope that it will be useful, but WITHOUT * * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License * * for more details. * * * * You should have received a copy of the GNU Lesser General Public License * * along with this library; if not, write to the Free Software Foundation, * * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * * * Web site: http://cgogn.unistra.fr/ * * Contact information: cgogn@unistra.fr * * * *******************************************************************************/ #ifndef __3MR_MCCRACKENJOY_FILTER__ #define __3MR_MCCRACKENJOY_FILTER__ #include #include "Algo/Geometry/centroid.h" #include "Algo/Modelisation/tetrahedralization.h" namespace CGoGN { namespace Algo { namespace Volume { namespace MR { namespace Primal { namespace Filters { /* Catmull-clark on Boundary Vertices and MJ96 on Insides Vertices *********************************************************************************/ template class MJ96VertexSubdivision : public Algo::MR::Filter { protected: typename PFP::MAP& m_map ; VertexAttribute& m_position ; public: MJ96VertexSubdivision(typename PFP::MAP& m, VertexAttribute& p) : m_map(m), m_position(p) {} void operator() () { TraversorV trav(m_map) ; for (Dart d = trav.begin(); d != trav.end(); d = trav.next()) { if(m_map.isBoundaryVertex(d)) { Dart db = m_map.findBoundaryFaceOfVertex(d); typename PFP::VEC3 np1(0) ; typename PFP::VEC3 np2(0) ; unsigned int degree1 = 0 ; unsigned int degree2 = 0 ; Dart it = db ; do { ++degree1 ; Dart dd = m_map.phi1(it) ; np1 += m_position[dd] ; Dart end = m_map.phi_1(it) ; dd = m_map.phi1(dd) ; do { ++degree2 ; np2 += m_position[dd] ; dd = m_map.phi1(dd) ; } while(dd != end) ; it = m_map.phi2(m_map.phi_1(it)) ; } while(it != db) ; float beta = 3.0 / (2.0 * degree1) ; float gamma = 1.0 / (4.0 * degree2) ; np1 *= beta / degree1 ; np2 *= gamma / degree2 ; typename PFP::VEC3 vp = m_position[db] ; vp *= 1.0 - beta - gamma ; m_map.incCurrentLevel() ; m_position[d] = np1 + np2 + vp ; m_map.decCurrentLevel() ; } else { typename PFP::VEC3 P = m_position[d]; //vertex points typename PFP::VEC3 Cavg = typename PFP::VEC3(0); unsigned int degree = 0; Traversor3VW travVW(m_map, d); for(Dart dit = travVW.begin() ; dit != travVW.end() ; dit = travVW.next()) { Cavg += Algo::Surface::Geometry::volumeCentroid(m_map, dit, m_position); ++degree; } Cavg /= degree; typename PFP::VEC3 Aavg = typename PFP::VEC3(0); degree = 0; Traversor3VF travVF(m_map, d); for(Dart dit = travVF.begin() ; dit != travVF.end() ; dit = travVF.next()) { Aavg += Algo::Surface::Geometry::faceCentroid(m_map, dit, m_position); ++degree; } Aavg /= degree; typename PFP::VEC3 Mavg = typename PFP::VEC3(0); degree = 0; Traversor3VE travVE(m_map, d); for(Dart dit = travVE.begin() ; dit != travVE.end() ; dit = travVE.next()) { Dart d2 = m_map.phi2(dit); Aavg += (m_position[dit] + m_position[d2]) * typename PFP::REAL(0.5); ++degree; } Aavg /= degree; typename PFP::VEC3 vp = Cavg + Aavg * 3 + Mavg * 3 + P; vp /= 8; m_map.incCurrentLevel() ; m_position[d] = P;//vp; m_map.decCurrentLevel() ; } } } }; template class MJ96EdgeSubdivision : public Algo::MR::Filter { protected: typename PFP::MAP& m_map ; VertexAttribute& m_position ; public: MJ96EdgeSubdivision(typename PFP::MAP& m, VertexAttribute& p) : m_map(m), m_position(p) {} void operator() () { TraversorE trav(m_map) ; for (Dart d = trav.begin(); d != trav.end(); d = trav.next()) { if(m_map.isBoundaryEdge(d)) { Dart db = m_map.findBoundaryFaceOfEdge(d); Dart d1 = m_map.phi2(db) ; Dart d2 = m_map.phi2(d1) ; Dart d3 = m_map.phi_1(d1) ; Dart d4 = m_map.phi_1(d2) ; Dart d5 = m_map.phi1(m_map.phi1(d1)) ; Dart d6 = m_map.phi1(m_map.phi1(d2)) ; typename PFP::VEC3 p1 = m_position[d1] ; typename PFP::VEC3 p2 = m_position[d2] ; typename PFP::VEC3 p3 = m_position[d3] ; typename PFP::VEC3 p4 = m_position[d4] ; typename PFP::VEC3 p5 = m_position[d5] ; typename PFP::VEC3 p6 = m_position[d6] ; p1 *= 3.0 / 8.0 ; p2 *= 3.0 / 8.0 ; p3 *= 1.0 / 16.0 ; p4 *= 1.0 / 16.0 ; p5 *= 1.0 / 16.0 ; p6 *= 1.0 / 16.0 ; m_map.incCurrentLevel() ; Dart midV = m_map.phi2(d); m_position[midV] = p1 + p2 + p3 + p4 + p5 + p6 ; m_map.decCurrentLevel() ; } else { //edge points typename PFP::VEC3 Cavg = typename PFP::VEC3(0); unsigned int degree = 0; Traversor3EW travEW(m_map, d); for(Dart dit = travEW.begin() ; dit != travEW.end() ; dit = travEW.next()) { Cavg += Algo::Surface::Geometry::volumeCentroid(m_map, dit, m_position); ++degree; } Cavg /= degree; typename PFP::VEC3 Aavg = typename PFP::VEC3(0); degree = 0; Traversor3EF travEF(m_map, d); for(Dart dit = travEF.begin() ; dit != travEF.end() ; dit = travEF.next()) { Aavg += Algo::Surface::Geometry::faceCentroid(m_map, dit, m_position); ++degree; } Aavg /= degree; Dart d2 = m_map.phi2(d); typename PFP::VEC3 M = (m_position[d] + m_position[d2]) * typename PFP::REAL(0.5); typename PFP::VEC3 ep = Cavg + Aavg * 2 + M * (degree - 3); ep /= degree; m_map.incCurrentLevel() ; Dart midV = m_map.phi2(d); m_position[midV] = ep; m_map.decCurrentLevel() ; } } } }; template class MJ96FaceSubdivision : public Algo::MR::Filter { protected: typename PFP::MAP& m_map ; VertexAttribute& m_position ; public: MJ96FaceSubdivision(typename PFP::MAP& m, VertexAttribute& p) : m_map(m), m_position(p) {} void operator() () { TraversorF trav(m_map) ; for (Dart d = trav.begin(); d != trav.end(); d = trav.next()) { if(m_map.isBoundaryFace(d)) { Dart db = m_map.phi3(d); typename PFP::VEC3 p(0) ; unsigned int degree = 0 ; Traversor2FV trav(m_map, db) ; for(Dart it = trav.begin(); it != trav.end(); it = trav.next()) { ++degree ; p += m_position[it] ; } p /= degree ; m_map.incCurrentLevel() ; Dart df = m_map.phi1(m_map.phi1(d)) ; m_position[df] = p ; m_map.decCurrentLevel() ; } else { //face points typename PFP::VEC3 C0 = Algo::Surface::Geometry::volumeCentroid(m_map, d, m_position); typename PFP::VEC3 C1 = Algo::Surface::Geometry::volumeCentroid(m_map, m_map.phi3(d), m_position); typename PFP::VEC3 A = Algo::Surface::Geometry::faceCentroid(m_map, m_map.phi3(d), m_position); typename PFP::VEC3 fp = C0 + A * 2 + C1; fp /= 4; m_map.incCurrentLevel() ; Dart df = m_map.phi1(m_map.phi1(d)) ; m_position[df] = fp; m_map.decCurrentLevel() ; } } } }; template class MJ96VolumeSubdivision : public Algo::MR::Filter { protected: typename PFP::MAP& m_map ; VertexAttribute& m_position ; public: MJ96VolumeSubdivision(typename PFP::MAP& m, VertexAttribute& p) : m_map(m), m_position(p) {} void operator() () { TraversorW trav(m_map) ; for (Dart d = trav.begin(); d != trav.end(); d = trav.next()) { //cell points : these points are the average of the //vertices of the lattice that bound the cell typename PFP::VEC3 p = Algo::Surface::Geometry::volumeCentroid(m_map, d, m_position); m_map.incCurrentLevel() ; Dart midV = m_map.phi_1(m_map.phi2(m_map.phi1(d))); m_position[midV] = p ; m_map.decCurrentLevel() ; } } }; } // namespace Filters } // namespace Primal } // namespace MR } // namespace Volume } // namespace Algo } // namespace CGoGN #endif /* __3MR_FILTERS_PRIMAL__ */