Création d'un compte pour un collaborateur extérieur au laboratoire depuis l'intranet ICube : https://intranet.icube.unistra.fr/fr/labs/member/profile

bivariatePolynomials.hpp 11.1 KB
Newer Older
Sauvage's avatar
Sauvage committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
/*
 * sphericalHarmonics.hpp
 *
 *  Created on: Oct 2, 2013
 *      Author: sauvage
 */

namespace CGoGN
{

namespace Utils
{

template <typename Tscalar,typename Tcoef> int SphericalHarmonics<Tscalar,Tcoef>::resolution = -1;
template <typename Tscalar,typename Tcoef> int SphericalHarmonics<Tscalar,Tcoef>::nb_coefs = -1;
template <typename Tscalar,typename Tcoef> unsigned long SphericalHarmonics<Tscalar,Tcoef>::cpt_instances = 0;

template <typename Tscalar,typename Tcoef> Tscalar SphericalHarmonics<Tscalar,Tcoef>::K_tab[(max_resolution+1)*(max_resolution+1)];
template <typename Tscalar,typename Tcoef> Tscalar SphericalHarmonics<Tscalar,Tcoef>::F_tab[(max_resolution+1)*(max_resolution+1)];


/*************************************************************************
construction, destruction and initialization
**************************************************************************/

template <typename Tscalar,typename Tcoef>
SphericalHarmonics<Tscalar,Tcoef>::SphericalHarmonics()
{
	assert ( (nb_coefs > 0) || !" maybe you forgot to call set_level()");
	coefs = new Tcoef[nb_coefs];
	++ cpt_instances;
	for (int i = 0; i < nb_coefs; i++)
		coefs[i] = Tcoef (0);
}

template <typename Tscalar,typename Tcoef>
SphericalHarmonics<Tscalar,Tcoef>::SphericalHarmonics(SphericalHarmonics const & r)
{
	assert ( (nb_coefs > 0) || !" maybe you forgot to call set_level()");
	coefs = new Tcoef[nb_coefs];
	++cpt_instances;
	for (int i = 0; i < nb_coefs; i++)
		coefs[i] = r.coefs[i];
}

template <typename Tscalar,typename Tcoef>
SphericalHarmonics<Tscalar,Tcoef>::~SphericalHarmonics()
{
	delete[] coefs;
	--cpt_instances;
}

template <typename Tscalar,typename Tcoef>
void SphericalHarmonics<Tscalar,Tcoef>::set_level(int res_level)
{
	assert(res_level >= 0 && res_level < max_resolution);
	assert(cpt_instances == 0);
	resolution = res_level;
	nb_coefs = (resolution + 1) * (resolution + 1);
	init_K_tab();
}

template <typename Tscalar,typename Tcoef>
void SphericalHarmonics<Tscalar,Tcoef>::set_nb_coefs(int nbc)
{
	assert(nbc > 0);
	int sq = ceil(sqrt(nbc)) ;
	assert(sq*sq == nbc || !"Number of coefs does not fill the last level") ;
	set_level(sq-1) ;
}

/*************************************************************************
evaluation
**************************************************************************/

template <typename Tscalar,typename Tcoef>
void SphericalHarmonics<Tscalar,Tcoef>::set_eval_direction (Tscalar theta, Tscalar phi)
{
	compute_P_tab(cos(theta));
	compute_y_tab(phi);
}

template <typename Tscalar,typename Tcoef>
void SphericalHarmonics<Tscalar,Tcoef>::set_eval_direction (Tscalar x, Tscalar y, Tscalar z)
{
	compute_P_tab(z);

	Tscalar phi (0);
	if ((x*x + y*y) > 0.0)
		phi = atan2(y, x);

	compute_y_tab(phi);
}

template <typename Tscalar,typename Tcoef>
Tcoef SphericalHarmonics<Tscalar,Tcoef>::evaluate () const
{
	Tcoef r (0); // (0.0,0.0,0.0); //  TODO : use Tcoef (0)
	for (int i = 0; i < nb_coefs; i++)
	{
		r += coefs[i] * F_tab[i];
	}
	return r;
}

template <typename Tscalar,typename Tcoef>
Tcoef SphericalHarmonics<Tscalar,Tcoef>::evaluate_at (Tscalar theta, Tscalar phi) const
{
	set_eval_direction(theta, phi);
	return evaluate();
}

template <typename Tscalar,typename Tcoef>
Tcoef SphericalHarmonics<Tscalar,Tcoef>::evaluate_at (Tscalar x, Tscalar y, Tscalar z) const
{
	set_eval_direction(x, y, z);
	return evaluate();
}

template <typename Tscalar,typename Tcoef>
void SphericalHarmonics<Tscalar,Tcoef>::init_K_tab ()
{
	for(int l = 0; l <= resolution; l++)
	{
		// recursive computation of the squares
		K_tab[index(l,0)] = (2*l+1) / (4*M_PI);
		for (int m = 1; m <= l; m++)
			K_tab[index(l,m)] = K_tab[index(l,m-1)] / (l-m+1) / (l+m);
		// square root + symmetry
		K_tab[index(l,0)] = sqrt(K_tab[index(l,0)]);
		for (int m = 1; m <= l; m++)
		{
			K_tab[index(l,m)] = sqrt(K_tab[index(l,m)]);
			K_tab[index(l,-m)] = K_tab[index(l,m)];
		}
	}
}

/* obsolete : was used for shaders
template <typename Tscalar,typename Tcoef>
void SphericalHarmonics<Tscalar,Tcoef>::copy_K_tab (Tscalar tab[])
{
	assert ( (nb_coefs>0) || !" maybe you forgot to call set_level()");
	for (unsigned int i = 0 ; i < nb_coefs ; ++i)
		tab[i] = K_tab[i] ;
}
*/

template <typename Tscalar,typename Tcoef>
void SphericalHarmonics<Tscalar,Tcoef>::compute_P_tab (Tscalar t)
{
//	if (t<0) {t=-t*t;} else {t=t*t;} // for plotting only : expand the param near equator

	F_tab[index(0,0)] = 1;
	for (int l = 1; l <= resolution; l++)
	{
		F_tab[index(l,l)] = (1-2*l) * sqrt(1-t*t) * F_tab[index(l-1,l-1)];  // first diago
		F_tab[index(l,l-1)] = t * (2*l-1) * F_tab[index(l-1,l-1)];// second diago
		for (int m = 0; m <= l-2; m++)
		{// remaining of the line under the 2 diago
			F_tab[index(l,m)] = t * (2*l-1) / (float) (l-m) * F_tab[index(l-1,m)] - (l+m-1) / (float) (l-m) * F_tab[index(l-2,m)];
		}
	}
}

template <typename Tscalar,typename Tcoef>
void SphericalHarmonics<Tscalar,Tcoef>::compute_y_tab (Tscalar phi)
{
	for (int l = 0; l <= resolution; l++)
	{
		F_tab[index(l,0)] *= K_tab[index(l,0)]; // remove for plotting
	}

	for (int m = 1; m <= resolution; m++)
	{
		Tscalar cos_m_phi = cos ( m * phi );
		Tscalar sin_m_phi = sin ( m * phi );

		for (int l = m; l <= resolution; l++)
		{
            F_tab[index(l,m)] *= M_SQRT2; // sqrt(2.0); // remove for plotting
			F_tab[index(l,m)] *= K_tab[index(l,m)]; // remove for plotting
			F_tab[index(l,-m)] = F_tab[index(l,m)] * sin_m_phi ; // store the values for -m<0 in the upper triangle
			F_tab[index(l,m)] *= cos_m_phi;
		}
	}

}

/*************************************************************************
I/O
**************************************************************************/

template <typename Tscalar,typename Tcoef>
std::ostream & operator << (std::ostream & os, const SphericalHarmonics<Tscalar,Tcoef> & sh)
{
	for (int l = 0; l <= sh.resolution; l++)
	{
		for (int m = -l; m <= l; m++)
			os << sh.get_coef(l,m) << "\t";
		os << std::endl;
	}
	return os;
}

/*************************************************************************
operators
**************************************************************************/

template <typename Tscalar,typename Tcoef>
void SphericalHarmonics<Tscalar,Tcoef>::operator = (const SphericalHarmonics<Tscalar,Tcoef>& sh)
{
	for (int i = 0; i < nb_coefs; i++)
		this->coefs[i] = sh.coefs[i];
}

template <typename Tscalar,typename Tcoef>
void SphericalHarmonics<Tscalar,Tcoef>::operator += (const SphericalHarmonics<Tscalar,Tcoef>& sh)
{
	for (int i = 0; i < nb_coefs; i++)
		this->coefs[i] += sh.coefs[i];
}

template <typename Tscalar,typename Tcoef>
SphericalHarmonics<Tscalar,Tcoef> SphericalHarmonics<Tscalar,Tcoef>::operator + (const SphericalHarmonics<Tscalar,Tcoef>& sh) const
{
	SphericalHarmonics<Tscalar,Tcoef> res(*this);
	res += sh;
	return res;
}

template <typename Tscalar,typename Tcoef>
void SphericalHarmonics<Tscalar,Tcoef>::operator -= (const SphericalHarmonics<Tscalar,Tcoef>& sh)
{
	for (int i = 0; i < nb_coefs; i++)
		this->coefs[i] -= sh.coefs[i];
}

template <typename Tscalar,typename Tcoef>
SphericalHarmonics<Tscalar,Tcoef> SphericalHarmonics<Tscalar,Tcoef>::operator - (const SphericalHarmonics<Tscalar,Tcoef>& sh) const
{
	SphericalHarmonics<Tscalar,Tcoef> res(*this);
	res -= sh;
	return res;
}

template <typename Tscalar,typename Tcoef>
void SphericalHarmonics<Tscalar,Tcoef>::operator *= (Tscalar s)
{
	for (int i = 0; i < nb_coefs; i++)
		this->coefs[i] *= s;
}

template <typename Tscalar,typename Tcoef>
SphericalHarmonics<Tscalar,Tcoef> SphericalHarmonics<Tscalar,Tcoef>::operator * (Tscalar s) const
{
	SphericalHarmonics<Tscalar,Tcoef> res(*this);
	res *= s;
	return res;
}

template <typename Tscalar,typename Tcoef>
void SphericalHarmonics<Tscalar,Tcoef>::operator /= (Tscalar s)
{
	for (int i = 0; i < nb_coefs; i++)
		this->coefs[i] /= s;
}

template <typename Tscalar,typename Tcoef>
SphericalHarmonics<Tscalar,Tcoef> SphericalHarmonics<Tscalar,Tcoef>::operator / (Tscalar s) const
{
	SphericalHarmonics<Tscalar,Tcoef> res(*this);
	res /= s;
	return res;
}

/*************************************************************************
fitting
**************************************************************************/

template <typename Tscalar,typename Tcoef>
template <typename Tdirection, typename Tchannel>
void SphericalHarmonics<Tscalar,Tcoef>::fit_to_data(
	int n,
	Tdirection* t_theta, Tdirection* t_phi,
	Tchannel* t_R, Tchannel* t_G, Tchannel* t_B,
	double lambda)
{
	Eigen::MatrixXd mM (nb_coefs,n); // matrix with basis function values, evaluated for all directions
	// compute mM
	for (int p = 0; p < n; ++p)
	{
		set_eval_direction(t_theta[p], t_phi[p]);
		for (int i = 0; i < nb_coefs; ++i)
		{
			mM(i,p) = F_tab[i];
		}
	}
	fit_to_data(n, mM, t_R, t_G, t_B, lambda);
}

template <typename Tscalar,typename Tcoef>
template <typename Tdirection, typename Tchannel>
void SphericalHarmonics<Tscalar,Tcoef>::fit_to_data(
	int n,
	Tdirection* t_x, Tdirection* t_y, Tdirection* t_z,
	Tchannel* t_R, Tchannel* t_G, Tchannel* t_B,
	double lambda)
{
	Eigen::MatrixXd mM (nb_coefs,n); // matrix with basis function values, evaluated for all directions
	// compute mM
	for (int p=0; p<n; ++p)
	{
		set_eval_direction(t_x[p],t_y[p],t_z[p]);
		for (int i=0; i<nb_coefs; ++i)
		{
			mM(i,p) = F_tab[i];
		}
	}
	fit_to_data(n, mM, t_R, t_G, t_B, lambda);
}

template <typename Tscalar,typename Tcoef>
template <typename Tchannel>
void SphericalHarmonics<Tscalar,Tcoef>::fit_to_data(
	int n,
	Eigen::MatrixXd& mM,
	Tchannel* t_R, Tchannel* t_G, Tchannel* t_B,
	double lambda)
{
	// fits the data t_R, t_G and t_B, according to our 2013 CGF paper
	// mM contains basis function values, (already) evaluated for all input directions
	// works only for 3 channels

	// allocate the memory
	Eigen::MatrixXd mA (nb_coefs, nb_coefs); // matrix A in linear system AC=B
	Eigen::MatrixXd mB (nb_coefs, 3); // matrix B in linear system AC=B : contains [t_R, t_G, t_B]
	Eigen::MatrixXd mC (nb_coefs, 3); // matrix C (solution) in linear system AC=B : contains the RGB coefs of the resulting SH

	// compute mA
	for (int i = 0; i < nb_coefs; ++i)
	{
		for (int j = 0; j < nb_coefs; ++j)
		{
			mA(i,j) = 0;
			for (int p = 0; p < n; ++p)
			{
				mA(i,j) += mM(i,p) * mM(j,p);
			}
			mA(i,j) *= (1.0-lambda) / n;
		}
	}

	for (int l = 0; l <= resolution; ++l)
	{
		for (int m =- l; m <= l; ++m)
		{
			int i = index(l,m);
			mA(i,i) += lambda * l * (l+1) / (4.0*M_PI);
		}
	}

	// compute mB
	for (int i = 0; i < nb_coefs; ++i)
	{
		mB(i,0) = 0.0;
		mB(i,1) = 0.0;
		mB(i,2) = 0.0;
		for (int p = 0; p < n; ++p)
		{
			mB(i,0) += mM(i,p) * t_R[p];
			mB(i,1) += mM(i,p) * t_G[p];
			mB(i,2) += mM(i,p) * t_B[p];
		}
		mB(i,0) *= (1.0-lambda) / n;
		mB(i,1) *= (1.0-lambda) / n;
		mB(i,2) *= (1.0-lambda) / n;
	}

	// solve the system with LDLT decomposition
	Eigen::LDLT<Eigen::MatrixXd> solver (mA);
	mC = solver.solve(mB);

//	std::cout << "phi = " << mM << std::endl;
//	std::cout << mA << std::endl;
//	std::cout << "*" << std::endl;
//	std::cout << mC << std::endl;
//	std::cout << "=" << std::endl;
//	std::cout << mB << std::endl;

	// store result in the SH
	// it is assumed that Tcoef is VEC3 actually
	for (int i = 0; i < nb_coefs; ++i)
	{
		get_coef(i)[0] = mC(i,0);
		get_coef(i)[1] = mC(i,1);
		get_coef(i)[2] = mC(i,2);
	}
}

} // namespace Utils

} // namespace CGoGN