ihm2_PrimalRegular.hpp 9.58 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
/*******************************************************************************
* CGoGN: Combinatorial and Geometric modeling with Generic N-dimensional Maps  *
* version 0.1                                                                  *
* Copyright (C) 2009-2012, IGG Team, LSIIT, University of Strasbourg           *
*                                                                              *
* This library is free software; you can redistribute it and/or modify it      *
* under the terms of the GNU Lesser General Public License as published by the *
* Free Software Foundation; either version 2.1 of the License, or (at your     *
* option) any later version.                                                   *
*                                                                              *
* This library is distributed in the hope that it will be useful, but WITHOUT  *
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or        *
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License  *
* for more details.                                                            *
*                                                                              *
* You should have received a copy of the GNU Lesser General Public License     *
* along with this library; if not, write to the Free Software Foundation,      *
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301 USA.           *
*                                                                              *
* Web site: http://cgogn.unistra.fr/                                           *
* Contact information: cgogn@unistra.fr                                        *
*                                                                              *
*******************************************************************************/

namespace CGoGN
{

namespace Algo
{

namespace MR
{

namespace Primal
{

namespace Regular
{

template <typename PFP>
IHM2<PFP>::IHM2(typename PFP::MAP& map) :
42
43
	m_map(map),
	shareVertexEmbeddings(true)
44
45
46
47
48
49
50
51
{

}

//if true : tri and quad else quad
template <typename PFP>
void IHM2<PFP>::addNewLevel(bool triQuad)
{
52
	unsigned int cur = m_map.getCurrentLevel() ; //pushLevel
53

54
	m_map.setCurrentLevel(m_map.getMaxLevel() + 1) ;
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
	// cut edges
	TraversorE<typename PFP::MAP> travE(m_map) ;
	for (Dart d = travE.begin(); d != travE.end(); d = travE.next())
	{
		Dart dd = m_map.phi2(d) ;

		m_map.cutEdge(d) ;
		unsigned int eId = m_map.getEdgeId(d) ;
		m_map.setEdgeId(m_map.phi1(d), eId) ;
		m_map.setEdgeId(m_map.phi1(dd), eId) ;

		travE.skip(d) ;
		travE.skip(m_map.phi1(d)) ;
	}

	// split faces
	TraversorF<typename PFP::MAP> travF(m_map) ;
	for (Dart d = travF.begin(); d != travF.end(); d = travF.next())
	{
		Dart old = d ;

		if(m_map.getDartLevel(old) == m_map.getMaxLevel())
			old = m_map.phi1(old) ;

		m_map.decCurrentLevel();
		unsigned int degree = m_map.faceDegree(old) ;
		m_map.incCurrentLevel();

		if((degree == 3) && triQuad)								// if subdividing a triangle
		{
			Dart dd = m_map.phi1(old) ;
			Dart e = m_map.phi1(m_map.phi1(dd)) ;
			m_map.splitFace(dd, e) ;					// insert a new edge
			travF.skip(dd) ;
			//unsigned int id = m_map.getNewEdgeId() ;
			unsigned int id = m_map.getTriRefinementEdgeId(m_map.phi_1(dd));
			m_map.setEdgeId(m_map.phi_1(dd), id) ;		// set the edge id of the inserted
			m_map.setEdgeId(m_map.phi_1(e), id) ;		// edge to the next available id

			dd = e ;
			e = m_map.phi1(m_map.phi1(dd)) ;
			m_map.splitFace(dd, e) ;
			travF.skip(dd) ;
			//id = m_map.getNewEdgeId() ;
			id = m_map.getTriRefinementEdgeId(m_map.phi_1(dd));
			m_map.setEdgeId(m_map.phi_1(dd), id) ;
			m_map.setEdgeId(m_map.phi_1(e), id) ;

			dd = e ;
			e = m_map.phi1(m_map.phi1(dd)) ;
			m_map.splitFace(dd, e) ;
			travF.skip(dd) ;
			//id = m_map.getNewEdgeId() ;
			id = m_map.getTriRefinementEdgeId(m_map.phi_1(dd));
			m_map.setEdgeId(m_map.phi_1(dd), id) ;
			m_map.setEdgeId(m_map.phi_1(e), id) ;

			travF.skip(e) ;
		}
		else											// if subdividing a polygonal face
		{
			Dart dd = m_map.phi1(old) ;
			Dart next = m_map.phi1(m_map.phi1(dd)) ;
			m_map.splitFace(dd, next) ;		// insert a first edge

			Dart ne = m_map.phi2(m_map.phi_1(dd)) ;
			Dart ne2 = m_map.phi2(ne) ;
			m_map.cutEdge(ne) ;				// cut the new edge to insert the central vertex
			travF.skip(dd) ;
			//unsigned int id = m_map.getNewEdgeId() ;
			unsigned int id = m_map.getQuadRefinementEdgeId(m_map.phi2(ne));
			m_map.setEdgeId(ne, id) ;
			m_map.setEdgeId(m_map.phi2(ne), id) ;			// set the edge id of the inserted
			//id = m_map.getNewEdgeId() ;
			id = m_map.getQuadRefinementEdgeId(ne2);
			m_map.setEdgeId(ne2, id) ;					// edges to the next available ids
			m_map.setEdgeId(m_map.phi2(ne2), id) ;

			dd = m_map.phi1(m_map.phi1(next)) ;
			while(dd != ne)				// turn around the face and insert new edges
			{							// linked to the central vertex
				Dart tmp = m_map.phi1(ne) ;
				m_map.splitFace(tmp, dd) ;
				travF.skip(tmp) ;
				Dart nne = m_map.phi2(m_map.phi_1(dd)) ;
				//id = m_map.getNewEdgeId() ;
				id = m_map.getQuadRefinementEdgeId(m_map.phi2(nne));
				m_map.setEdgeId(nne, id) ;
				m_map.setEdgeId(m_map.phi2(nne), id) ;
				dd = m_map.phi1(m_map.phi1(dd)) ;
			}
			travF.skip(ne) ;
		}
	}

	m_map.setCurrentLevel(cur) ;
152
153
154
155
156
}

template <typename PFP>
void IHM2<PFP>::addLevelFront()
{
157
158
	std::vector<Dart> irregVertices;
	irregVertices.reserve(1024);
159
160
161
162
163
164
165
166
167
168

	//look for an irregular vertex

	TraversorV<typename PFP::MAP> tv(m_map);
	bool found = false;
	for(Dart d = tv.begin() ; !found && d != tv.end() ; d = tv.next())
	{
		if(m_map.vertexDegree(d) != 6)
		{
			found = true;
169
			irregVertices.push_back(d);
170
171
172
		}
	}

173
174
175
176
177
178
179
180
181
182
183
184
	//found the number of levels
	bool finished = false;
	Dart dit = irregVertices[0];
	unsigned int nbSteps = 0;
	do
	{
		dit = m_map.phi1(m_map.phi2(m_map.phi1(m_map.phi2(m_map.phi1(dit)))));
		++nbSteps;

		if(m_map.vertexDegree(m_map.phi1(dit)) != 6)
			finished = true;
	}while(!finished);
185

186
187
188
189
	++nbSteps;

	unsigned int nbLevel = 0;
	while(nbSteps > 1)
190
	{
191
192
193
194
195
196
		nbSteps /= 2 ;
		++nbLevel ;
	}
	m_map.setMaxLevel(nbLevel);

	std::cout << "nb levels = " << nbLevel+1 << std::endl;
197

198
199
200
201
202
203
204
205
206
207
208
209
	unsigned int curLevel = nbLevel;

	do
	{
		m_map.setCurrentLevel(curLevel);

		DartMarker md(m_map);
		std::vector<Dart> visitedVertices(irregVertices);

		std::cout << "getCurrentLevel = " << m_map.getCurrentLevel() << std::endl;

		for(unsigned int i = 0 ; i < visitedVertices.size() ; ++i)
210
		{
211
			Dart d = visitedVertices[i];
212

213
214
215
216
217
			Traversor2VE<typename PFP::MAP> tve(m_map, d);
			for(Dart eit = tve.begin() ; eit != tve.end() ; eit = tve.next())
			{
				//coarse all faces around the vertex
				if(!md.isMarked(eit))
218
219
220
221
222
223
224
225
				{
					Dart fit1 = m_map.phi2(m_map.phi1(eit));
					Dart fit2 = m_map.phi1(fit1);
					Dart fit3 = m_map.phi1(fit2);

					md.markOrbit<FACE>(fit1);
					md.markOrbit<FACE>(m_map.phi2(fit2));
					md.markOrbit<FACE>(m_map.phi2(fit3));
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
					md.markOrbit<FACE>(eit);

					visitedVertices.push_back(m_map.phi_1(m_map.phi2(fit2)));
					visitedVertices.push_back(m_map.phi_1(m_map.phi2(fit3)));

					m_map.setDartLevel(fit1, curLevel);
					m_map.setDartLevel(m_map.phi2(fit1), curLevel);
					m_map.setDartLevel(m_map.phi1(m_map.phi2(fit1)), curLevel);

					m_map.setDartLevel(fit2, curLevel);
					m_map.setDartLevel(m_map.phi2(fit2), curLevel);
					m_map.setDartLevel(m_map.phi1(m_map.phi2(fit2)), curLevel);

					m_map.setDartLevel(fit3, curLevel);
					m_map.setDartLevel(m_map.phi2(fit3), curLevel);
					m_map.setDartLevel(m_map.phi1(m_map.phi2(fit3)), curLevel);

					if(curLevel == maxLevel)
					{
						unsigned int id = m_map.getTriRefinementEdgeId(m_map.phi2(fit1));
						m_map.setEdgeId(m_map.phi2(fit1), id);
						m_map.setEdgeId(fit1, id);

						id = m_map.getTriRefinementEdgeId(m_map.phi2(fit2));
						m_map.setEdgeId(m_map.phi2(fit2), id);
						m_map.setEdgeId(fit2, id);

						id = m_map.getTriRefinementEdgeId(m_map.phi2(fit3));
						m_map.setEdgeId(m_map.phi2(fit3), id);
						m_map.setEdgeId(fit3, id);
					}
					else
					{

					}
//					if(curLevel == 2)
//					{
//						unsigned int id = m_map.getTriRefinementEdgeId(m_map.phi2(fit1));
//						m_map.setEdgeId(m_map.phi2(fit1), id);
//						m_map.setEdgeId(fit1, id);
						//m_map.setEdgeId(fit1, id);
//						/std::cout << "fit1 = " << fit1 << std::endl;
						//std::cout << "m_map.phi2(fit1) = " << m_map.phi2(fit1) << std::endl;

//						id = m_map.getTriRefinementEdgeId(m_map.phi2(fit2));
//						m_map.setEdgeId(m_map.phi2(fit2), id);
//						m_map.setEdgeId(fit2, id);
						//m_map.setEdgeId(fit2, id);
						//std::cout << "fit2 = " << fit2 << std::endl;
						//std::cout << "m_map.phi2(fit2) = " << m_map.phi2(fit2) << std::endl;

//						id = m_map.getTriRefinementEdgeId(m_map.phi2(fit3));
//						m_map.setEdgeId(m_map.phi2(fit3), id);
//						m_map.setEdgeId(fit3, id);
						//m_map.setEdgeId(fit3, id);
						//std::cout << "fit3 = " << fit3 << std::endl;
						//std::cout << "m_map.phi2(fit3) = " << m_map.phi2(fit3) << std::endl;
//					}
284
				}
285
286
			}
		}
287

288
		curLevel = curLevel - 1;
289

290
	}while(curLevel > 1);
291

292
	m_map.setCurrentLevel(nbLevel); //m_maxLevel
293
294
295
296
297
298
}


template <typename PFP>
void IHM2<PFP>::analysis()
{
299
	assert(m_map.getCurrentLevel() > 0 || !"analysis : called on level 0") ;
300

301
	m_map.decCurrentLevel() ;
302

303
304
	for(unsigned int i = 0; i < analysisFilters.size(); ++i)
		(*analysisFilters[i])() ;
305
306
307
308
309
310

}

template <typename PFP>
void IHM2<PFP>::synthesis()
{
311
	assert(m_map.getCurrentLevel() < m_map.getMaxLevel() || !"synthesis : called on max level") ;
312

313
314
	for(unsigned int i = 0; i < synthesisFilters.size(); ++i)
		(*synthesisFilters[i])() ;
315

316
	m_map.incCurrentLevel() ;
317
318
319
320
321
322
323
324
325
326
327
}

} // namespace Regular

} // namespace Primal

} // namespace MR

} // namespace Algo

} // namespace CGoGN