quaternion.cpp 17 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
/****************************************************************************

 Copyright (C) 2002-2014 Gilles Debunne. All rights reserved.

 This file is part of the QGLViewer library version 2.6.1.

 http://www.libqglviewer.com - contact@libqglviewer.com

 This file may be used under the terms of the GNU General Public License 
 versions 2.0 or 3.0 as published by the Free Software Foundation and
 appearing in the LICENSE file included in the packaging of this file.
 In addition, as a special exception, Gilles Debunne gives you certain 
 additional rights, described in the file GPL_EXCEPTION in this package.

 libQGLViewer uses dual licensing. Commercial/proprietary software must
 purchase a libQGLViewer Commercial License.

 This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
 WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

*****************************************************************************/

#include "domUtils.h"
#include "quaternion.h"
#include <stdlib.h> // RAND_MAX

// All the methods are declared inline in Quaternion.h
using namespace qglviewer;
using namespace std;

/*! Constructs a Quaternion that will rotate from the \p from direction to the \p to direction.

Note that this rotation is not uniquely defined. The selected axis is usually orthogonal to \p from
and \p to, minimizing the rotation angle. This method is robust and can handle small or almost identical vectors. */
Quaternion::Quaternion(const Vec& from, const Vec& to)
{
	const qreal epsilon = 1E-10;

	const qreal fromSqNorm = from.squaredNorm();
	const qreal toSqNorm   = to.squaredNorm();
	// Identity Quaternion when one vector is null
	if ((fromSqNorm < epsilon) || (toSqNorm < epsilon))
	{
		q[0]=q[1]=q[2]=0.0;
		q[3]=1.0;
	}
	else
	{
		Vec axis = cross(from, to);
		const qreal axisSqNorm = axis.squaredNorm();

		// Aligned vectors, pick any axis, not aligned with from or to
		if (axisSqNorm < epsilon)
			axis = from.orthogonalVec();

		qreal angle = asin(sqrt(axisSqNorm / (fromSqNorm * toSqNorm)));

		if (from*to < 0.0)
			angle = M_PI-angle;

		setAxisAngle(axis, angle);
	}
}

/*! Returns the image of \p v by the Quaternion inverse() rotation.

rotate() performs an inverse transformation. Same as inverse().rotate(v). */
Vec Quaternion::inverseRotate(const Vec& v) const
{
	return inverse().rotate(v);
}

/*! Returns the image of \p v by the Quaternion rotation.

See also inverseRotate() and operator*(const Quaternion&, const Vec&). */
Vec Quaternion::rotate(const Vec& v) const
{
	const qreal q00 = 2.0 * q[0] * q[0];
	const qreal q11 = 2.0 * q[1] * q[1];
	const qreal q22 = 2.0 * q[2] * q[2];

	const qreal q01 = 2.0 * q[0] * q[1];
	const qreal q02 = 2.0 * q[0] * q[2];
	const qreal q03 = 2.0 * q[0] * q[3];

	const qreal q12 = 2.0 * q[1] * q[2];
	const qreal q13 = 2.0 * q[1] * q[3];

	const qreal q23 = 2.0 * q[2] * q[3];

	return Vec((1.0 - q11 - q22)*v[0] + (      q01 - q23)*v[1] + (      q02 + q13)*v[2],
			(      q01 + q23)*v[0] + (1.0 - q22 - q00)*v[1] + (      q12 - q03)*v[2],
			(      q02 - q13)*v[0] + (      q12 + q03)*v[1] + (1.0 - q11 - q00)*v[2] );
}

/*! Set the Quaternion from a (supposedly correct) 3x3 rotation matrix.

  The matrix is expressed in European format: its three \e columns are the images by the rotation of
  the three vectors of an orthogonal basis. Note that OpenGL uses a symmetric representation for its
  matrices.

  setFromRotatedBasis() sets a Quaternion from the three axis of a rotated frame. It actually fills
  the three columns of a matrix with these rotated basis vectors and calls this method. */
void Quaternion::setFromRotationMatrix(const qreal m[3][3])
{
	// Compute one plus the trace of the matrix
	const qreal onePlusTrace = 1.0 + m[0][0] + m[1][1] + m[2][2];

	if (onePlusTrace > 1E-5)
	{
		// Direct computation
		const qreal s = sqrt(onePlusTrace) * 2.0;
		q[0] = (m[2][1] - m[1][2]) / s;
		q[1] = (m[0][2] - m[2][0]) / s;
		q[2] = (m[1][0] - m[0][1]) / s;
		q[3] = 0.25 * s;
	}
	else
	{
		// Computation depends on major diagonal term
		if ((m[0][0] > m[1][1])&(m[0][0] > m[2][2]))
		{
			const qreal s = sqrt(1.0 + m[0][0] - m[1][1] - m[2][2]) * 2.0;
			q[0] = 0.25 * s;
			q[1] = (m[0][1] + m[1][0]) / s;
			q[2] = (m[0][2] + m[2][0]) / s;
			q[3] = (m[1][2] - m[2][1]) / s;
		}
		else
			if (m[1][1] > m[2][2])
			{
				const qreal s = sqrt(1.0 + m[1][1] - m[0][0] - m[2][2]) * 2.0;
				q[0] = (m[0][1] + m[1][0]) / s;
				q[1] = 0.25 * s;
				q[2] = (m[1][2] + m[2][1]) / s;
				q[3] = (m[0][2] - m[2][0]) / s;
			}
			else
			{
				const qreal s = sqrt(1.0 + m[2][2] - m[0][0] - m[1][1]) * 2.0;
				q[0] = (m[0][2] + m[2][0]) / s;
				q[1] = (m[1][2] + m[2][1]) / s;
				q[2] = 0.25 * s;
				q[3] = (m[0][1] - m[1][0]) / s;
			}
	}
	normalize();
}

#ifndef DOXYGEN
void Quaternion::setFromRotationMatrix(const float m[3][3])
{
	qWarning("setFromRotationMatrix now expects a double[3][3] parameter");

155
	qreal mat[3][3];
156 157
	for (int i=0; i<3; ++i)
		for (int j=0; j<3; ++j)
158
			mat[i][j] = qreal(m[i][j]);
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552

	setFromRotationMatrix(mat);
}

void Quaternion::setFromRotatedBase(const Vec& X, const Vec& Y, const Vec& Z)
{
	qWarning("setFromRotatedBase is deprecated, use setFromRotatedBasis instead");
	setFromRotatedBasis(X,Y,Z);
}
#endif

/*! Sets the Quaternion from the three rotated vectors of an orthogonal basis.

  The three vectors do not have to be normalized but must be orthogonal and direct (X^Y=k*Z, with k>0).

  \code
  Quaternion q;
  q.setFromRotatedBasis(X, Y, Z);
  // Now q.rotate(Vec(1,0,0)) == X and q.inverseRotate(X) == Vec(1,0,0)
  // Same goes for Y and Z with Vec(0,1,0) and Vec(0,0,1).
  \endcode

  See also setFromRotationMatrix() and Quaternion(const Vec&, const Vec&). */
void Quaternion::setFromRotatedBasis(const Vec& X, const Vec& Y, const Vec& Z)
{
	qreal m[3][3];
	qreal normX = X.norm();
	qreal normY = Y.norm();
	qreal normZ = Z.norm();

	for (int i=0; i<3; ++i)
	{
		m[i][0] = X[i] / normX;
		m[i][1] = Y[i] / normY;
		m[i][2] = Z[i] / normZ;
	}

	setFromRotationMatrix(m);
}

/*! Returns the axis vector and the angle (in radians) of the rotation represented by the Quaternion.
 See the axis() and angle() documentations. */
void Quaternion::getAxisAngle(Vec& axis, qreal& angle) const
{
	angle = 2.0 * acos(q[3]);
	axis = Vec(q[0], q[1], q[2]);
	const qreal sinus = axis.norm();
	if (sinus > 1E-8)
		axis /= sinus;

	if (angle > M_PI)
	{
		angle = 2.0 * qreal(M_PI) - angle;
		axis = -axis;
	}
}

/*! Returns the normalized axis direction of the rotation represented by the Quaternion.

It is null for an identity Quaternion. See also angle() and getAxisAngle(). */
Vec Quaternion::axis() const
{
	Vec res = Vec(q[0], q[1], q[2]);
	const qreal sinus = res.norm();
	if (sinus > 1E-8)
		res /= sinus;
	return (acos(q[3]) <= M_PI/2.0) ? res : -res;
}

/*! Returns the angle (in radians) of the rotation represented by the Quaternion.

 This value is always in the range [0-pi]. Larger rotational angles are obtained by inverting the
 axis() direction.

 See also axis() and getAxisAngle(). */
qreal Quaternion::angle() const
{
	const qreal angle = 2.0 * acos(q[3]);
	return (angle <= M_PI) ? angle : 2.0*M_PI - angle;
}

/*! Returns an XML \c QDomElement that represents the Quaternion.

 \p name is the name of the QDomElement tag. \p doc is the \c QDomDocument factory used to create
 QDomElement.

 When output to a file, the resulting QDomElement will look like:
 \code
 <name q0=".." q1=".." q2=".." q3=".." />
 \endcode

 Use initFromDOMElement() to restore the Quaternion state from the resulting \c QDomElement. See
 also the Quaternion(const QDomElement&) constructor.

 See the Vec::domElement() documentation for a complete QDomDocument creation and saving example.

 See also Frame::domElement(), Camera::domElement(), KeyFrameInterpolator::domElement()... */
QDomElement Quaternion::domElement(const QString& name, QDomDocument& document) const
{
	QDomElement de = document.createElement(name);
	de.setAttribute("q0", QString::number(q[0]));
	de.setAttribute("q1", QString::number(q[1]));
	de.setAttribute("q2", QString::number(q[2]));
	de.setAttribute("q3", QString::number(q[3]));
	return de;
}

/*! Restores the Quaternion state from a \c QDomElement created by domElement().

 The \c QDomElement should contain the \c q0, \c q1 , \c q2 and \c q3 attributes. If one of these
 attributes is missing or is not a number, a warning is displayed and these fields are respectively
 set to 0.0, 0.0, 0.0 and 1.0 (identity Quaternion).

 See also the Quaternion(const QDomElement&) constructor. */
void Quaternion::initFromDOMElement(const QDomElement& element)
{
	Quaternion q(element);
	*this = q;
}

/*! Constructs a Quaternion from a \c QDomElement representing an XML code of the form
  \code< anyTagName q0=".." q1=".." q2=".." q3=".." />\endcode

  If one of these attributes is missing or is not a number, a warning is displayed and the associated
  value is respectively set to 0, 0, 0 and 1 (identity Quaternion).

  See also domElement() and initFromDOMElement(). */
Quaternion::Quaternion(const QDomElement& element)
{
	QStringList attribute;
	attribute << "q0" << "q1" << "q2" << "q3";
	for (int i=0; i<attribute.size(); ++i)
		q[i] = DomUtils::qrealFromDom(element, attribute[i], ((i<3)?0.0:1.0));
}

/*! Returns the Quaternion associated 4x4 OpenGL rotation matrix.

 Use \c glMultMatrixd(q.matrix()) to apply the rotation represented by Quaternion \c q to the
 current OpenGL matrix.

 See also getMatrix(), getRotationMatrix() and inverseMatrix().

 \attention The result is only valid until the next call to matrix(). Use it immediately (as shown
 above) or consider using getMatrix() instead.

 \attention The matrix is given in OpenGL format (row-major order) and is the transpose of the
 actual mathematical European representation. Consider using getRotationMatrix() instead. */
const GLdouble* Quaternion::matrix() const
{
	static GLdouble m[4][4];
	getMatrix(m);
	return (const GLdouble*)(m);
}

/*! Fills \p m with the OpenGL representation of the Quaternion rotation.

Use matrix() if you do not need to store this matrix and simply want to alter the current OpenGL
matrix. See also getInverseMatrix() and Frame::getMatrix(). */
void Quaternion::getMatrix(GLdouble m[4][4]) const
{
	const qreal q00 = 2.0 * q[0] * q[0];
	const qreal q11 = 2.0 * q[1] * q[1];
	const qreal q22 = 2.0 * q[2] * q[2];

	const qreal q01 = 2.0 * q[0] * q[1];
	const qreal q02 = 2.0 * q[0] * q[2];
	const qreal q03 = 2.0 * q[0] * q[3];

	const qreal q12 = 2.0 * q[1] * q[2];
	const qreal q13 = 2.0 * q[1] * q[3];

	const qreal q23 = 2.0 * q[2] * q[3];

	m[0][0] = 1.0 - q11 - q22;
	m[1][0] =       q01 - q23;
	m[2][0] =       q02 + q13;

	m[0][1] =       q01 + q23;
	m[1][1] = 1.0 - q22 - q00;
	m[2][1] =       q12 - q03;

	m[0][2] =       q02 - q13;
	m[1][2] =       q12 + q03;
	m[2][2] = 1.0 - q11 - q00;

	m[0][3] = 0.0;
	m[1][3] = 0.0;
	m[2][3] = 0.0;

	m[3][0] = 0.0;
	m[3][1] = 0.0;
	m[3][2] = 0.0;
	m[3][3] = 1.0;
}

/*! Same as getMatrix(), but with a \c GLdouble[16] parameter. See also getInverseMatrix() and Frame::getMatrix(). */
void Quaternion::getMatrix(GLdouble m[16]) const
{
	static GLdouble mat[4][4];
	getMatrix(mat);
	int count = 0;
	for (int i=0; i<4; ++i)
		for (int j=0; j<4; ++j)
			m[count++] = mat[i][j];
}

/*! Fills \p m with the 3x3 rotation matrix associated with the Quaternion.

  See also getInverseRotationMatrix().

  \attention \p m uses the European mathematical representation of the rotation matrix. Use matrix()
  and getMatrix() to retrieve the OpenGL transposed version. */
void Quaternion::getRotationMatrix(qreal m[3][3]) const
{
	static GLdouble mat[4][4];
	getMatrix(mat);
	for (int i=0; i<3; ++i)
		for (int j=0; j<3; ++j)
			// Beware of transposition
			m[i][j] = qreal(mat[j][i]);
}

/*! Returns the associated 4x4 OpenGL \e inverse rotation matrix. This is simply the matrix() of the
  inverse().

  \attention The result is only valid until the next call to inverseMatrix(). Use it immediately (as
  in \c glMultMatrixd(q.inverseMatrix())) or use getInverseMatrix() instead.

  \attention The matrix is given in OpenGL format (row-major order) and is the transpose of the
  actual mathematical European representation. Consider using getInverseRotationMatrix() instead. */
const GLdouble* Quaternion::inverseMatrix() const
{
	static GLdouble m[4][4];
	getInverseMatrix(m);
	return (const GLdouble*)(m);
}

/*! Fills \p m with the OpenGL matrix corresponding to the inverse() rotation.

Use inverseMatrix() if you do not need to store this matrix and simply want to alter the current
OpenGL matrix. See also getMatrix(). */
void Quaternion::getInverseMatrix(GLdouble m[4][4]) const
{
	inverse().getMatrix(m);
}

/*! Same as getInverseMatrix(), but with a \c GLdouble[16] parameter. See also getMatrix(). */
void Quaternion::getInverseMatrix(GLdouble m[16]) const
{
	inverse().getMatrix(m);
}

/*! \p m is set to the 3x3 \e inverse rotation matrix associated with the Quaternion.

 \attention This is the classical mathematical rotation matrix. The OpenGL format uses its
 transposed version. See inverseMatrix() and getInverseMatrix(). */
void Quaternion::getInverseRotationMatrix(qreal m[3][3]) const
{
	static GLdouble mat[4][4];
	getInverseMatrix(mat);
	for (int i=0; i<3; ++i)
		for (int j=0; j<3; ++j)
			// Beware of transposition
			m[i][j] = qreal(mat[j][i]);
}


/*! Returns the slerp interpolation of Quaternions \p a and \p b, at time \p t.

 \p t should range in [0,1]. Result is \p a when \p t=0 and \p b when \p t=1.

 When \p allowFlip is \c true (default) the slerp interpolation will always use the "shortest path"
 between the Quaternions' orientations, by "flipping" the source Quaternion if needed (see
 negate()). */
Quaternion Quaternion::slerp(const Quaternion& a, const Quaternion& b, qreal t, bool allowFlip)
{
	qreal cosAngle = Quaternion::dot(a, b);

	qreal c1, c2;
	// Linear interpolation for close orientations
	if ((1.0 - fabs(cosAngle)) < 0.01)
	{
		c1 = 1.0 - t;
		c2 = t;
	}
	else
	{
		// Spherical interpolation
		qreal angle    = acos(fabs(cosAngle));
		qreal sinAngle = sin(angle);
		c1 = sin(angle * (1.0 - t)) / sinAngle;
		c2 = sin(angle * t) / sinAngle;
	}

	// Use the shortest path
	if (allowFlip && (cosAngle < 0.0))
		c1 = -c1;

	return Quaternion(c1*a[0] + c2*b[0], c1*a[1] + c2*b[1], c1*a[2] + c2*b[2], c1*a[3] + c2*b[3]);
}

/*! Returns the slerp interpolation of the two Quaternions \p a and \p b, at time \p t, using
  tangents \p tgA and \p tgB.

  The resulting Quaternion is "between" \p a and \p b (result is \p a when \p t=0 and \p b for \p
  t=1).

  Use squadTangent() to define the Quaternion tangents \p tgA and \p tgB. */
Quaternion Quaternion::squad(const Quaternion& a, const Quaternion& tgA, const Quaternion& tgB, const Quaternion& b, qreal t)
{
	Quaternion ab = Quaternion::slerp(a, b, t);
	Quaternion tg = Quaternion::slerp(tgA, tgB, t, false);
	return Quaternion::slerp(ab, tg, 2.0*t*(1.0-t), false);
}

/*! Returns the logarithm of the Quaternion. See also exp(). */
Quaternion Quaternion::log()
{
	qreal len = sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2]);

	if (len < 1E-6)
		return Quaternion(q[0], q[1], q[2], 0.0);
	else
	{
		qreal coef = acos(q[3]) / len;
		return Quaternion(q[0]*coef, q[1]*coef, q[2]*coef, 0.0);
	}
}

/*! Returns the exponential of the Quaternion. See also log(). */
Quaternion Quaternion::exp()
{
	qreal theta = sqrt(q[0]*q[0] + q[1]*q[1] + q[2]*q[2]);

	if (theta < 1E-6)
		return Quaternion(q[0], q[1], q[2], cos(theta));
	else
	{
		qreal coef = sin(theta) / theta;
		return Quaternion(q[0]*coef, q[1]*coef, q[2]*coef, cos(theta));
	}
}

/*! Returns log(a. inverse() * b). Useful for squadTangent(). */
Quaternion Quaternion::lnDif(const Quaternion& a, const Quaternion& b)
{
	Quaternion dif = a.inverse()*b;
	dif.normalize();
	return dif.log();
}

/*! Returns a tangent Quaternion for \p center, defined by \p before and \p after Quaternions.

 Useful for smooth spline interpolation of Quaternion with squad() and slerp(). */
Quaternion Quaternion::squadTangent(const Quaternion& before, const Quaternion& center, const Quaternion& after)
{
	Quaternion l1 = Quaternion::lnDif(center,before);
	Quaternion l2 = Quaternion::lnDif(center,after);
	Quaternion e;
	for (int i=0; i<4; ++i)
		e.q[i] = -0.25 * (l1.q[i] + l2.q[i]);
	e = center*(e.exp());

	// if (Quaternion::dot(e,b) < 0.0)
	// e.negate();

	return e;
}

ostream& operator<<(ostream& o, const Quaternion& Q)
{
	return o << Q[0] << '\t' << Q[1] << '\t' << Q[2] << '\t' << Q[3];
}

/*! Returns a random unit Quaternion.

You can create a randomly directed unit vector using:
\code
Vec randomDir = Quaternion::randomQuaternion() * Vec(1.0, 0.0, 0.0); // or any other Vec
\endcode

\note This function uses rand() to create pseudo-random numbers and the random number generator can
be initialized using srand().*/
Quaternion Quaternion::randomQuaternion()
{
	// The rand() function is not very portable and may not be available on your system.
	// Add the appropriate include or replace by an other random function in case of problem.
	qreal seed = rand()/(qreal)RAND_MAX;
	qreal r1 = sqrt(1.0 - seed);
	qreal r2 = sqrt(seed);
	qreal t1 = 2.0 * M_PI * (rand()/(qreal)RAND_MAX);
	qreal t2 = 2.0 * M_PI * (rand()/(qreal)RAND_MAX);
	return Quaternion(sin(t1)*r1, cos(t1)*r1, sin(t2)*r2, cos(t2)*r2);
}