CUDA.tpl 30.6 KB
Newer Older
Ogier Maitre's avatar
Ogier Maitre committed
1
\TEMPLATE_START
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
#ifdef WIN32
#define _CRT_SECURE_NO_WARNINGS
#pragma comment(lib, "libEasea.lib")
#pragma comment(lib, "Winmm.lib")
#endif
/**
 This is program entry for STD template for EASEA
*/

\ANALYSE_PARAMETERS
#include <stdlib.h>
#include <iostream>
#include <time.h>
#include "COptionParser.h"
#include "CRandomGenerator.h"
#include "CEvolutionaryAlgorithm.h"
#include "global.h"
#include "EASEAIndividual.hpp"

using namespace std;

/** Global variables for the whole algorithm */
CIndividual** pPopulation = NULL;
CIndividual* bBest = NULL;
float* pEZ_MUT_PROB = NULL;
float* pEZ_XOVER_PROB = NULL;
Frederic Kruger's avatar
Frederic Kruger committed
28 29
unsigned *EZ_NB_GEN;
unsigned *EZ_current_generation;
kruger's avatar
kruger committed
30
CEvolutionaryAlgorithm* EA;
31 32 33 34 35 36 37 38 39 40

int main(int argc, char** argv){


	parseArguments("EASEA.prm",argc,argv);

	ParametersImpl p;
	p.setDefaultParameters(argc,argv);
	CEvolutionaryAlgorithm* ea = p.newEvolutionaryAlgorithm();

kruger's avatar
kruger committed
41 42
	EA = ea;

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
	EASEAInit(argc,argv);

	CPopulation* pop = ea->getPopulation();

	ea->runEvolutionaryLoop();

	EASEAFinal(pop);

	delete pop;

#ifdef WIN32
	system("pause");
#endif
	return 0;
}

\START_CUDA_GENOME_CU_TPL
#ifdef _WIN32
#define _CRT_SECURE_NO_WARNINGS
#define WIN32
#endif

#include <fstream>
#ifndef WIN32
#include <sys/time.h>
#else
#include <time.h>
#endif
kruger's avatar
kruger committed
71 72
#include <string>
#include <sstream>
73 74 75 76 77 78 79 80
#include "CRandomGenerator.h"
#include "CPopulation.h"
#include "COptionParser.h"
#include "CStoppingCriterion.h"
#include "CEvolutionaryAlgorithm.h"
#include "global.h"
#include "CIndividual.h"
#include <vector_types.h>
Ogier Maitre's avatar
Ogier Maitre committed
81
#include "CCuda.h"
82 83 84


using namespace std;
85
extern "C" __global__ void cudaEvaluatePopulation(void* d_population, unsigned popSize, float* d_fitnesses);
86 87 88 89
#include "EASEAIndividual.hpp"
bool INSTEAD_EVAL_STEP = false;

CRandomGenerator* globalRandomGenerator;
kruger's avatar
kruger committed
90
extern CEvolutionaryAlgorithm *EA;
91 92 93

#define CUDA_TPL

Ogier Maitre's avatar
Ogier Maitre committed
94
struct gpuEvaluationData* gpuData;
95

Ogier Maitre's avatar
Ogier Maitre committed
96 97 98
int fstGpu = 0;
int lstGpu = 0;

99

Ogier Maitre's avatar
Ogier Maitre committed
100
struct gpuEvaluationData* globalGpuData;
101 102 103 104 105 106 107 108 109 110 111 112 113 114
float* fitnessTemp;  
bool freeGPU = false;
bool first_generation = true;
int num_gpus = 0;       // number of CUDA GPUs

PopulationImpl* Pop = NULL;

\INSERT_USER_DECLARATIONS
\ANALYSE_USER_CLASSES

\INSERT_USER_CLASSES

\INSERT_USER_FUNCTIONS

Ogier Maitre's avatar
Ogier Maitre committed
115

Ogier Maitre's avatar
Ogier Maitre committed
116
void dispatchPopulation(int populationSize){
Ogier Maitre's avatar
Ogier Maitre committed
117 118 119 120 121 122 123 124 125 126 127 128
  int noTotalMP = 0; // number of MP will be used to distribute the population
  int count = 0;

  //Recuperation of each device information's.
  for( int index = 0; index < num_gpus; index++){
    cudaDeviceProp deviceProp;
    cudaError_t lastError = cudaGetDeviceProperties(&deviceProp, index+fstGpu);
    if( lastError!=cudaSuccess ){
      std::cerr << "Cannot get device information for device no : " << index+fstGpu << std::endl;
      exit(-1);
    }

Ogier Maitre's avatar
Ogier Maitre committed
129 130 131 132
    globalGpuData[index].num_MP =  deviceProp.multiProcessorCount; 
    globalGpuData[index].num_Warp = deviceProp.warpSize;
    noTotalMP += globalGpuData[index].num_MP;
    globalGpuData[index].gpuProp = deviceProp;
Ogier Maitre's avatar
Ogier Maitre committed
133 134 135 136
  }

  for( int index = 0; index < num_gpus; index++){

Ogier Maitre's avatar
Ogier Maitre committed
137
    globalGpuData[index].indiv_start = count;
Ogier Maitre's avatar
Ogier Maitre committed
138

Ogier Maitre's avatar
Ogier Maitre committed
139 140 141 142
    if(index != (num_gpus - 1)) {
      globalGpuData[index].sh_pop_size = ceil((float)populationSize * (((float)globalGpuData[index].num_MP) / (float)noTotalMP) );
    
    }
Ogier Maitre's avatar
Ogier Maitre committed
143 144
    //On the last card we are going to place the remaining individuals.  
    else 
Ogier Maitre's avatar
Ogier Maitre committed
145
      globalGpuData[index].sh_pop_size = populationSize - count;
Ogier Maitre's avatar
Ogier Maitre committed
146
	     
Ogier Maitre's avatar
Ogier Maitre committed
147
    count += globalGpuData[index].sh_pop_size;	     
Ogier Maitre's avatar
Ogier Maitre committed
148
  }
Ogier Maitre's avatar
Ogier Maitre committed
149 150 151 152
}

void cudaPreliminaryProcess(struct gpuEvaluationData* localGpuData, int populationSize){

Ogier Maitre's avatar
Ogier Maitre committed
153 154 155 156

  //  here we will compute how to spread the population to evaluate on GPGPU cores

  struct cudaFuncAttributes attr;
157
  CUDA_SAFE_CALL(cudaFuncGetAttributes(&attr,cudaEvaluatePopulation));
Ogier Maitre's avatar
Ogier Maitre committed
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

  int thLimit = attr.maxThreadsPerBlock;
  int N = localGpuData->sh_pop_size;
  int w = localGpuData->gpuProp.warpSize;

  int b=0,t=0;
	      
  do{
    b += localGpuData->num_MP;
    t = ceilf( MIN(thLimit,(float)N/b)/w)*w;
  } while( (b*t<N) || t>thLimit );
	      
  if( localGpuData->d_population!=NULL ){ cudaFree(localGpuData->d_population); }
  if( localGpuData->d_fitness!=NULL ){ cudaFree(localGpuData->d_fitness); }

  CUDA_SAFE_CALL(cudaMalloc(&localGpuData->d_population,localGpuData->sh_pop_size*(sizeof(IndividualImpl))));
  CUDA_SAFE_CALL(cudaMalloc(((void**)&localGpuData->d_fitness),localGpuData->sh_pop_size*sizeof(float)));


  std::cout << "card (" << localGpuData->threadId << ") " << localGpuData->gpuProp.name << " has " << localGpuData->sh_pop_size << " individual to evaluate" 
	    << ": t=" << t << " b: " << b << std::endl;
   localGpuData->dimGrid = b;
   localGpuData->dimBlock = t;

182 183
}

Frederic Kruger's avatar
Frederic Kruger committed
184
__device__ __host__ inline IndividualImpl* INDIVIDUAL_ACCESS(void* buffer,unsigned id){
185 186 187
  return (IndividualImpl*)buffer+id;
}

Ogier Maitre's avatar
Ogier Maitre committed
188
__device__ float cudaEvaluate(void* devBuffer, unsigned id){
189 190 191 192
  \INSERT_CUDA_EVALUATOR
}
  

Ogier Maitre's avatar
Ogier Maitre committed
193
extern "C" 
Ogier Maitre's avatar
Ogier Maitre committed
194
__global__ void cudaEvaluatePopulation(void* d_population, unsigned popSize, float* d_fitnesses){
195

Frederic Kruger's avatar
Frederic Kruger committed
196
        unsigned id = (blockDim.x*blockIdx.x)+threadIdx.x;  // id of the individual computed by this thread
197 198 199 200 201

  	// escaping for the last block
        if( id >= popSize ) return;
  
        //void* indiv = ((char*)d_population)+id*(\GENOME_SIZE+sizeof(IndividualImpl*)); // compute the offset of the current individual
Ogier Maitre's avatar
Ogier Maitre committed
202
        d_fitnesses[id] = cudaEvaluate(d_population,id);
203 204 205 206 207 208 209
}



void* gpuThreadMain(void* arg){

  cudaError_t lastError;
Ogier Maitre's avatar
Ogier Maitre committed
210 211
  struct gpuEvaluationData* localGpuData = (struct gpuEvaluationData*)arg;
  //std::cout << " gpuId : " << localGpuData->gpuId << std::endl;
Ogier Maitre's avatar
Ogier Maitre committed
212 213 214

  lastError = cudaSetDevice(localGpuData->gpuId);

Ogier Maitre's avatar
Ogier Maitre committed
215
  if( lastError != cudaSuccess ){
Ogier Maitre's avatar
Ogier Maitre committed
216
    std::cerr << "Error, cannot set device properly for device no " << localGpuData->gpuId << std::endl;
Ogier Maitre's avatar
Ogier Maitre committed
217 218 219
    exit(-1);
  }
  
220 221
  int nbr_cudaPreliminaryProcess = 2;

Ogier Maitre's avatar
Ogier Maitre committed
222
  //struct my_struct_gpu* localGpuInfo = gpu_infos+localArg->threadId;
Ogier Maitre's avatar
Ogier Maitre committed
223 224 225


  if( lastError != cudaSuccess ){
Ogier Maitre's avatar
Ogier Maitre committed
226
    std::cerr << "Error, cannot get function attribute for cudaEvaluatePopulation on card: " << localGpuData->gpuProp.name  << std::endl;
Ogier Maitre's avatar
Ogier Maitre committed
227 228 229
    exit(-1);
  }
  
230 231 232 233 234
  // Because of the context of each GPU thread, we have to put all user's CUDA 
  // initialisation here if we want to use them in the GPU, otherwise they are
  // not found in the GPU context
  \INSERT_USER_CUDA

235 236
  // Wait for population to evaluate
   while(1){
Ogier Maitre's avatar
Ogier Maitre committed
237 238
	    sem_wait(&localGpuData->sem_in);

239
	    if( freeGPU ) {
Ogier Maitre's avatar
Ogier Maitre committed
240 241 242
	      // do we need to free gpu memory ?
	      cudaFree(localGpuData->d_fitness);
	      cudaFree(localGpuData->d_population);
Ogier Maitre's avatar
Ogier Maitre committed
243
	      break;
244
	    }
Ogier Maitre's avatar
Ogier Maitre committed
245

Ogier Maitre's avatar
Ogier Maitre committed
246
	    if(nbr_cudaPreliminaryProcess > 0) {
Ogier Maitre's avatar
Ogier Maitre committed
247
	      
Ogier Maitre's avatar
Ogier Maitre committed
248 249 250 251 252
	      if( nbr_cudaPreliminaryProcess==2 ) 
		cudaPreliminaryProcess(localGpuData,EA->population->parentPopulationSize);
	      else {
		cudaPreliminaryProcess(localGpuData,EA->population->offspringPopulationSize);
	      }
Ogier Maitre's avatar
Ogier Maitre committed
253 254
	      nbr_cudaPreliminaryProcess--;

Ogier Maitre's avatar
Ogier Maitre committed
255
	      if( localGpuData->dimBlock*localGpuData->dimGrid!=localGpuData->sh_pop_size ){
Ogier Maitre's avatar
Ogier Maitre committed
256 257
		// due to lack of individuals, the population distribution is not optimial according to core organisation
		// warn the user and propose a proper configuration
Ogier Maitre's avatar
Ogier Maitre committed
258 259
		std::cerr << "Warning, population distribution is not optimial, consider adding " << (localGpuData->dimBlock*localGpuData->dimGrid-localGpuData->sh_pop_size) 
			  << " individuals to " << (nbr_cudaPreliminaryProcess==2?"parent":"offspring")<<" population" << std::endl;
Ogier Maitre's avatar
Ogier Maitre committed
260 261
	      }
            }
Ogier Maitre's avatar
Ogier Maitre committed
262 263
	    
	    // transfer data to GPU memory
Ogier Maitre's avatar
Ogier Maitre committed
264
            lastError = cudaMemcpy(localGpuData->d_population,(IndividualImpl*)(Pop->cudaBuffer)+localGpuData->indiv_start,
Ogier Maitre's avatar
Ogier Maitre committed
265 266 267
				   (sizeof(IndividualImpl)*localGpuData->sh_pop_size),cudaMemcpyHostToDevice);

	    CUDA_SAFE_CALL(lastError);
Ogier Maitre's avatar
Ogier Maitre committed
268 269 270
	    
	    
	    //std::cout << localGpuData->sh_pop_size << ";" << localGpuData->dimGrid << ";"<<  localGpuData->dimBlock << std::endl;
271
				      
Ogier Maitre's avatar
Ogier Maitre committed
272
	    // the real GPU computation (kernel launch)
Ogier Maitre's avatar
Ogier Maitre committed
273
	    cudaEvaluatePopulation<<< localGpuData->dimGrid, localGpuData->dimBlock>>>(localGpuData->d_population, localGpuData->sh_pop_size, localGpuData->d_fitness);
Ogier Maitre's avatar
Ogier Maitre committed
274 275 276
	    lastError = cudaGetLastError();
	    CUDA_SAFE_CALL(lastError);

Ogier Maitre's avatar
Ogier Maitre committed
277 278 279
	    if( cudaGetLastError()!=cudaSuccess ){ std::cerr << "Error during synchronize" << std::endl; }

	    // be sure the GPU has finished computing evaluations, and get results to CPU
280
	    lastError = cudaThreadSynchronize();
Ogier Maitre's avatar
Ogier Maitre committed
281
	    if( lastError!=cudaSuccess ){ std::cerr << "Error during synchronize" << std::endl; }
Ogier Maitre's avatar
Ogier Maitre committed
282
	    lastError = cudaMemcpy(fitnessTemp + localGpuData->indiv_start, localGpuData->d_fitness, localGpuData->sh_pop_size*sizeof(float), cudaMemcpyDeviceToHost);
283
	    
Ogier Maitre's avatar
Ogier Maitre committed
284
	    // this thread has finished its phase, so lets tell it to the main thread
Ogier Maitre's avatar
Ogier Maitre committed
285
	    sem_post(&localGpuData->sem_out);
286
   }
Ogier Maitre's avatar
Ogier Maitre committed
287
  sem_post(&localGpuData->sem_out);
288 289 290 291 292 293
  fflush(stdout);
  return NULL;
}
				
void wake_up_gpu_thread(){
	for( int i=0 ; i<num_gpus ; i++ ){
Ogier Maitre's avatar
Ogier Maitre committed
294
		sem_post(&(globalGpuData[i].sem_in));
Ogier Maitre's avatar
Ogier Maitre committed
295 296 297
	
  	}
	for( int i=0 ; i<num_gpus ; i++ ){
Ogier Maitre's avatar
Ogier Maitre committed
298
	  sem_wait(&globalGpuData[i].sem_out);
299
  	}
Ogier Maitre's avatar
Ogier Maitre committed
300

301 302 303 304
}
				
void InitialiseGPUs(){
	//MultiGPU part on one CPU
Ogier Maitre's avatar
Ogier Maitre committed
305
	globalGpuData = (struct gpuEvaluationData*)malloc(sizeof(struct gpuEvaluationData)*num_gpus);
306
	pthread_t* t = (pthread_t*)malloc(sizeof(pthread_t)*num_gpus);
Ogier Maitre's avatar
Ogier Maitre committed
307
	int gpuId = fstGpu;
308 309
	//here we want to create on thread per GPU
	for( int i=0 ; i<num_gpus ; i++ ){
Ogier Maitre's avatar
Ogier Maitre committed
310
	  
Ogier Maitre's avatar
Ogier Maitre committed
311 312
		globalGpuData[i].d_fitness = NULL;
		globalGpuData[i].d_population = NULL;
Ogier Maitre's avatar
Ogier Maitre committed
313
		
Ogier Maitre's avatar
Ogier Maitre committed
314
		globalGpuData[i].gpuId = gpuId++;
Ogier Maitre's avatar
Ogier Maitre committed
315

Ogier Maitre's avatar
Ogier Maitre committed
316 317 318 319
	  	globalGpuData[i].threadId = i;
	  	sem_init(&globalGpuData[i].sem_in,0,0);
	  	sem_init(&globalGpuData[i].sem_out,0,0);
	  	if( pthread_create(t+i,NULL,gpuThreadMain,globalGpuData+i) ){ perror("pthread_create : "); }
320 321 322 323 324 325 326 327 328 329 330
	}
}

\INSERT_INITIALISATION_FUNCTION
\INSERT_FINALIZATION_FUNCTION

void evale_pop_chunk(CIndividual** population, int popSize){
  \INSTEAD_EVAL_FUNCTION
}

void EASEAInit(int argc, char** argv){
Ogier Maitre's avatar
Ogier Maitre committed
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
  fstGpu = setVariable("fstgpu",0);
  lstGpu = setVariable("lstgpu",0);

	if( lstGpu==fstGpu && fstGpu==0 ){
	  // use all gpus available
	  cudaGetDeviceCount(&num_gpus);
	}
	else{
	  int queryGpuNum;
	  cudaGetDeviceCount(&queryGpuNum);
	  if( (lstGpu - fstGpu)>queryGpuNum || fstGpu<0 || lstGpu>queryGpuNum){
	    std::cerr << "Error, not enough devices found on the system ("<< queryGpuNum <<") to satisfy user configuration ["<<fstGpu<<","<<lstGpu<<"["<<std::endl;
	    exit(-1);
	  }
	  else{
	    num_gpus = lstGpu-fstGpu;
	  }
	}

Ogier Maitre's avatar
Ogier Maitre committed
350
	//globalGpuData = (struct gpuEvaluationData*)malloc(sizeof(struct gpuEvaluationData)*num_gpus);
351 352 353 354 355 356 357
	InitialiseGPUs();
	\INSERT_INIT_FCT_CALL
}

void EASEAFinal(CPopulation* pop){
	freeGPU=true;
	wake_up_gpu_thread();
Ogier Maitre's avatar
Ogier Maitre committed
358
        free(globalGpuData);
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
	
	\INSERT_FINALIZATION_FCT_CALL;
}

void AESAEBeginningGenerationFunction(CEvolutionaryAlgorithm* evolutionaryAlgorithm){
	\INSERT_BEGIN_GENERATION_FUNCTION
}

void AESAEEndGenerationFunction(CEvolutionaryAlgorithm* evolutionaryAlgorithm){
	\INSERT_END_GENERATION_FUNCTION
}

void AESAEGenerationFunctionBeforeReplacement(CEvolutionaryAlgorithm* evolutionaryAlgorithm){
        \INSERT_GENERATION_FUNCTION_BEFORE_REPLACEMENT
}


IndividualImpl::IndividualImpl() : CIndividual() {
  \GENOME_CTOR 
  \INSERT_EO_INITIALISER
  valid = false;
Frédéric Krüger's avatar
Frédéric Krüger committed
380
  isImmigrant = false;
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
}

CIndividual* IndividualImpl::clone(){
	return new IndividualImpl(*this);
}

IndividualImpl::~IndividualImpl(){
  \GENOME_DTOR
}


float IndividualImpl::evaluate(){
  if(valid)
    return fitness;
  else{
    valid = true;
    \INSERT_EVALUATOR
  }
}

Frederic Kruger's avatar
Frederic Kruger committed
401 402 403 404 405
void IndividualImpl::boundChecking(){
        \INSERT_BOUND_CHECKING
}


kruger's avatar
kruger committed
406 407 408
string IndividualImpl::serialize(){
    ostringstream AESAE_Line(ios_base::app);
    \GENOME_SERIAL
409
    AESAE_Line << this->fitness;
kruger's avatar
kruger committed
410 411 412 413 414 415 416
    return AESAE_Line.str();
}

void IndividualImpl::deserialize(string Line){
    istringstream AESAE_Line(Line);
    string line;
    \GENOME_DESERIAL
417 418
    AESAE_Line >> this->fitness;
    this->valid=true;
Frédéric Krüger's avatar
Frédéric Krüger committed
419
    this->isImmigrant=false;
kruger's avatar
kruger committed
420 421
}

422 423 424 425 426 427 428 429 430 431 432
IndividualImpl::IndividualImpl(const IndividualImpl& genome){

  // ********************
  // Problem specific part
  \COPY_CTOR


  // ********************
  // Generic part
  this->valid = genome.valid;
  this->fitness = genome.fitness;
Frédéric Krüger's avatar
Frédéric Krüger committed
433
  this->isImmigrant = false;
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
}


CIndividual* IndividualImpl::crossover(CIndividual** ps){
	// ********************
	// Generic part
	IndividualImpl** tmp = (IndividualImpl**)ps;
	IndividualImpl parent1(*this);
	IndividualImpl parent2(*tmp[0]);
	IndividualImpl child(*this);

	//DEBUG_PRT("Xover");
	/*   cout << "p1 : " << parent1 << endl; */
	/*   cout << "p2 : " << parent2 << endl; */

	// ********************
	// Problem specific part
  	\INSERT_CROSSOVER


	child.valid = false;
	/*   cout << "child : " << child << endl; */
	return new IndividualImpl(child);
}


void IndividualImpl::printOn(std::ostream& os) const{
	\INSERT_DISPLAY
}

std::ostream& operator << (std::ostream& O, const IndividualImpl& B)
{
  // ********************
  // Problem specific part
  O << "\nIndividualImpl : "<< std::endl;
  O << "\t\t\t";
  B.printOn(O);

  if( B.valid ) O << "\t\t\tfitness : " << B.fitness;
  else O << "fitness is not yet computed" << std::endl;
  return O;
}


Frederic Kruger's avatar
Frederic Kruger committed
478
unsigned IndividualImpl::mutate( float pMutationPerGene ){
479 480 481 482 483 484 485 486 487 488
  this->valid=false;


  // ********************
  // Problem specific part
  \INSERT_MUTATOR
}


void PopulationImpl::evaluateParentPopulation(){
Frederic Kruger's avatar
Frederic Kruger committed
489
        unsigned actualPopulationSize = this->actualParentPopulationSize;
490 491
	fitnessTemp = new float[actualPopulationSize];
	int index;
Ogier Maitre's avatar
Ogier Maitre committed
492 493 494 495 496 497 498
	static bool dispatchedParents = false;
	
	if( dispatchedParents==false ){
	  dispatchPopulation(EA->population->parentPopulationSize);
	  dispatchedParents=true;
	}

499 500 501 502 503 504 505 506 507 508 509 510 511 512
	       	
 	wake_up_gpu_thread(); 

 	
	for( index=(actualPopulationSize-1); index>=0; index--){
		this->parents[index]->fitness = fitnessTemp[index];
		this->parents[index]->valid = true;
	}  

        delete[](fitnessTemp);

}

void PopulationImpl::evaluateOffspringPopulation(){
Frederic Kruger's avatar
Frederic Kruger committed
513
	unsigned actualPopulationSize = this->actualOffspringPopulationSize;
514 515
	fitnessTemp = new float[actualPopulationSize];
	int index;
Ogier Maitre's avatar
Ogier Maitre committed
516 517 518 519 520 521
	static bool dispatchedOffspring = false;
	
	if( dispatchedOffspring==false ){
	  dispatchPopulation(EA->population->offspringPopulationSize);
	  dispatchedOffspring=true;
	}
522 523

        for( index=(actualPopulationSize-1); index>=0; index--)
Ogier Maitre's avatar
Ogier Maitre committed
524
	    ((IndividualImpl*)this->offsprings[index])->copyToCudaBuffer(this->cudaBuffer,index);
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

        wake_up_gpu_thread(); 

	for( index=(actualPopulationSize-1); index>=0; index--){
		this->offsprings[index]->fitness = fitnessTemp[index];
		this->offsprings[index]->valid = true;
	}	  
 
        first_generation = false;
        delete[](fitnessTemp);
}





kruger's avatar
kruger committed
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
void ParametersImpl::setDefaultParameters(int argc, char** argv){
        this->minimizing = \MINIMAXI;
        this->nbGen = setVariable("nbGen",(int)\NB_GEN);

        seed = setVariable("seed",(int)time(0));
        globalRandomGenerator = new CRandomGenerator(seed);
        this->randomGenerator = globalRandomGenerator;

        selectionOperator = getSelectionOperator(setVariable("selectionOperator","\SELECTOR_OPERATOR"), this->minimizing, globalRandomGenerator);
        replacementOperator = getSelectionOperator(setVariable("reduceFinalOperator","\RED_FINAL_OPERATOR"),this->minimizing, globalRandomGenerator);
        parentReductionOperator = getSelectionOperator(setVariable("reduceParentsOperator","\RED_PAR_OPERATOR"),this->minimizing, globalRandomGenerator);
        offspringReductionOperator = getSelectionOperator(setVariable("reduceOffspringOperator","\RED_OFF_OPERATOR"),this->minimizing, globalRandomGenerator);
        selectionPressure = setVariable("selectionPressure",(float)\SELECT_PRM);
        replacementPressure = setVariable("reduceFinalPressure",(float)\RED_FINAL_PRM);
        parentReductionPressure = setVariable("reduceParentsPressure",(float)\RED_PAR_PRM);
        offspringReductionPressure = setVariable("reduceOffspringPressure",(float)\RED_OFF_PRM);
        pCrossover = \XOVER_PROB;
        pMutation = \MUT_PROB;
        pMutationPerGene = 0.05;

        parentPopulationSize = setVariable("popSize",(int)\POP_SIZE);
        offspringPopulationSize = setVariable("nbOffspring",(int)\OFF_SIZE);


        parentReductionSize = setReductionSizes(parentPopulationSize, setVariable("survivingParents",(float)\SURV_PAR_SIZE));
        offspringReductionSize = setReductionSizes(offspringPopulationSize, setVariable("survivingOffspring",(float)\SURV_OFF_SIZE));

        this->elitSize = setVariable("elite",(int)\ELITE_SIZE);
        this->strongElitism = setVariable("eliteType",(int)\ELITISM);

        if((this->parentReductionSize + this->offspringReductionSize) < this->parentPopulationSize){
                printf("*WARNING* parentReductionSize + offspringReductionSize < parentPopulationSize\n");
                printf("*WARNING* change Sizes in .prm or .ez\n");
                printf("EXITING\n");
                exit(1);
        }
        if((this->parentPopulationSize - this->parentReductionSize)>this->parentPopulationSize-this->elitSize){
                printf("*WARNING* parentPopulationSize - parentReductionSize > parentPopulationSize - elitSize\n");
                printf("*WARNING* change Sizes in .prm or .ez\n");
                printf("EXITING\n");
                exit(1);
        }
        if(!this->strongElitism && ((this->offspringPopulationSize - this->offspringReductionSize)>this->offspringPopulationSize-this->elitSize)){
                printf("*WARNING* offspringPopulationSize - offspringReductionSize > offspringPopulationSize - elitSize\n");
                printf("*WARNING* change Sizes in .prm or .ez\n");
                printf("EXITING\n");
                exit(1);
        }
        if(offspringReductionSize<offspringPopulationSize) offspringReduction = true;
        else offspringReduction = false;

        if(parentReductionSize<parentPopulationSize) parentReduction = true;
        else parentReduction = false;

        generationalCriterion = new CGenerationalCriterion(setVariable("nbGen",(int)\NB_GEN));
        controlCStopingCriterion = new CControlCStopingCriterion();
        timeCriterion = new CTimeCriterion(setVariable("timeLimit",\TIME_LIMIT));

	this->optimise=0;

        this->printStats = setVariable("printStats",\PRINT_STATS);
        this->generateCSVFile = setVariable("generateCSVFile",\GENERATE_CSV_FILE);
Frédéric Krüger's avatar
Frédéric Krüger committed
603
        this->generatePlotScript = setVariable("generatePlotScript",\GENERATE_GNUPLOT_SCRIPT);
kruger's avatar
kruger committed
604 605 606 607 608 609 610 611 612 613 614
        this->generateRScript = setVariable("generateRScript",\GENERATE_R_SCRIPT);
        this->plotStats = setVariable("plotStats",\PLOT_STATS);
	this->printInitialPopulation = setVariable("printInitialPopulation",0);
	this->printFinalPopulation = setVariable("printFinalPopulation",0);
	this->savePopulation = setVariable("savePopulation",\SAVE_POPULATION);
	this->startFromFile = setVariable("startFromFile",\START_FROM_FILE);

        this->outputFilename = (char*)"EASEA";
        this->plotOutputFilename = (char*)"EASEA.png";

	this->remoteIslandModel = setVariable("remoteIslandModel",\REMOTE_ISLAND_MODEL);
615 616 617 618
	std::string* ipFilename=new std::string();
	*ipFilename=setVariable("ipFile","\IP_FILE");
	
	this->ipFile =(char*)ipFilename->c_str();
Frédéric Krüger's avatar
Frédéric Krüger committed
619 620
    this->migrationProbability = setVariable("migrationProbability",(float)\MIGRATION_PROBABILITY);
    this->serverPort = setVariable("serverPort",\SERVER_PORT);
kruger's avatar
kruger committed
621

622 623 624 625 626 627
}

CEvolutionaryAlgorithm* ParametersImpl::newEvolutionaryAlgorithm(){

	pEZ_MUT_PROB = &pMutationPerGene;
	pEZ_XOVER_PROB = &pCrossover;
Frederic Kruger's avatar
Frederic Kruger committed
628
	EZ_NB_GEN = (unsigned*)setVariable("nbGen",\NB_GEN);
629 630 631 632 633 634 635 636 637 638 639 640 641 642
	EZ_current_generation=0;

	CEvolutionaryAlgorithm* ea = new EvolutionaryAlgorithmImpl(this);
	generationalCriterion->setCounterEa(ea->getCurrentGenerationPtr());
	 ea->addStoppingCriterion(generationalCriterion);
	ea->addStoppingCriterion(controlCStopingCriterion);
	ea->addStoppingCriterion(timeCriterion);

	  EZ_NB_GEN=((CGenerationalCriterion*)ea->stoppingCriteria[0])->getGenerationalLimit();
	  EZ_current_generation=&(ea->currentGeneration);

	 return ea;
}

Frederic Kruger's avatar
Frederic Kruger committed
643
inline void IndividualImpl::copyToCudaBuffer(void* buffer, unsigned id){
644 645 646 647 648 649 650 651 652
  
 memcpy(((IndividualImpl*)buffer)+id,this,sizeof(IndividualImpl)); 
  
}

void EvolutionaryAlgorithmImpl::initializeParentPopulation(){
    //DEBUG_PRT("Creation of %lu/%lu parents (other could have been loaded from input file)",this->params->parentPopulationSize-this->params->actualParentPopulationSize,this->params->parentPopulationSize);
    int index,Size = this->params->parentPopulationSize;
    
kruger's avatar
kruger committed
653 654 655 656 657 658 659
    if(this->params->startFromFile){
          ifstream AESAE_File("EASEA.pop");
          string AESAE_Line;
          for( index=(Size-1); index>=0; index--) {
             getline(AESAE_File, AESAE_Line);
            this->population->addIndividualParentPopulation(new IndividualImpl(),index);
            ((IndividualImpl*)this->population->parents[index])->deserialize(AESAE_Line);
Ogier Maitre's avatar
Ogier Maitre committed
660
            ((IndividualImpl*)this->population->parents[index])->copyToCudaBuffer(((PopulationImpl*)this->population)->cudaBuffer,index);
kruger's avatar
kruger committed
661 662 663 664 665 666
         }

        }
        else{
                for( index=(Size-1); index>=0; index--) {
                         this->population->addIndividualParentPopulation(new IndividualImpl(),index);
Ogier Maitre's avatar
Ogier Maitre committed
667
                        ((IndividualImpl*)this->population->parents[index])->copyToCudaBuffer(((PopulationImpl*)this->population)->cudaBuffer,index);
kruger's avatar
kruger committed
668 669
                }
    }
670 671 672 673 674 675 676
    
    this->population->actualOffspringPopulationSize = 0;
    this->population->actualParentPopulationSize = Size;
}


EvolutionaryAlgorithmImpl::EvolutionaryAlgorithmImpl(Parameters* params) : CEvolutionaryAlgorithm(params){
Ogier Maitre's avatar
Ogier Maitre committed
677 678

  // warning cstats parameter is null
679 680 681 682 683
  this->population = (CPopulation*)new
  PopulationImpl( this->params->parentPopulationSize,this->params->offspringPopulationSize,
                  this->params->pCrossover,this->params->pMutation,this->params->pMutationPerGene,
                  this->params->randomGenerator,this->params,this->cstats);

Ogier Maitre's avatar
Ogier Maitre committed
684 685 686 687 688
  int popSize = (params->parentPopulationSize>params->offspringPopulationSize?params->parentPopulationSize:params->offspringPopulationSize);
  ((PopulationImpl*)this->population)->cudaBuffer = (void*)malloc(sizeof(IndividualImpl)*( popSize ));
  
  // = new CCuda(params->parentPopulationSize, params->offspringPopulationSize, sizeof(IndividualImpl));
  Pop = ((PopulationImpl*)this->population);
689 690 691 692 693 694
}

EvolutionaryAlgorithmImpl::~EvolutionaryAlgorithmImpl(){

}

Ogier Maitre's avatar
Ogier Maitre committed
695
PopulationImpl::PopulationImpl(unsigned parentPopulationSize, unsigned offspringPopulationSize, float pCrossover, float pMutation, float pMutationPerGene, CRandomGenerator* rg, Parameters* params, CStats* stats) : CPopulation(parentPopulationSize, offspringPopulationSize, pCrossover, pMutation, pMutationPerGene, rg, params, stats){
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
	;
}

PopulationImpl::~PopulationImpl(){
}


\START_CUDA_GENOME_H_TPL

#ifndef PROBLEM_DEP_H
#define PROBLEM_DEP_H

//#include "CRandomGenerator.h"
#include <stdlib.h>
#include <iostream>
#include <CIndividual.h>
#include <Parameters.h>
kruger's avatar
kruger committed
713
#include <string>
Ogier Maitre's avatar
Ogier Maitre committed
714
#include <CStats.h>
kruger's avatar
kruger committed
715 716 717

using namespace std;

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
class CRandomGenerator;
class CSelectionOperator;
class CGenerationalCriterion;
class CEvolutionaryAlgorithm;
class CPopulation;
class Parameters;
class CCuda;


\INSERT_USER_CLASSES_DEFINITIONS

class IndividualImpl : public CIndividual {

public: // in EASEA the genome is public (for user functions,...)
	// Class members
  	\INSERT_GENOME


public:
	IndividualImpl();
	IndividualImpl(const IndividualImpl& indiv);
	virtual ~IndividualImpl();
	float evaluate();
Frederic Kruger's avatar
Frederic Kruger committed
741
	static unsigned getCrossoverArrity(){ return 2; }
742 743 744 745 746
	float getFitness(){ return this->fitness; }
	CIndividual* crossover(CIndividual** p2);
	void printOn(std::ostream& O) const;
	CIndividual* clone();

Frederic Kruger's avatar
Frederic Kruger committed
747
	unsigned mutate(float pMutationPerGene);
Frederic Kruger's avatar
Frederic Kruger committed
748 749 750

	void boundChecking();

kruger's avatar
kruger committed
751 752
	string serialize();
	void deserialize(string AESAE_Line);
Frederic Kruger's avatar
Frederic Kruger committed
753
	void copyToCudaBuffer(void* buffer, unsigned id);
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786

	friend std::ostream& operator << (std::ostream& O, const IndividualImpl& B) ;
	void initRandomGenerator(CRandomGenerator* rg){ IndividualImpl::rg = rg;}
};


class ParametersImpl : public Parameters {
public:
	void setDefaultParameters(int argc, char** argv);
	CEvolutionaryAlgorithm* newEvolutionaryAlgorithm();
};

/**
 * @TODO ces functions devraient s'appeler weierstrassInit, weierstrassFinal etc... (en gros EASEAFinal dans le tpl).
 *
 */

void EASEAInit(int argc, char** argv);
void EASEAFinal(CPopulation* pop);
void EASEABeginningGenerationFunction(CEvolutionaryAlgorithm* evolutionaryAlgorithm);
void EASEAEndGenerationFunction(CEvolutionaryAlgorithm* evolutionaryAlgorithm);
void EASEAGenerationFunctionBeforeReplacement(CEvolutionaryAlgorithm* evolutionaryAlgorithm);


class EvolutionaryAlgorithmImpl: public CEvolutionaryAlgorithm {
public:
	EvolutionaryAlgorithmImpl(Parameters* params);
	virtual ~EvolutionaryAlgorithmImpl();
	void initializeParentPopulation();
};

class PopulationImpl: public CPopulation {
public:
Ogier Maitre's avatar
Ogier Maitre committed
787 788 789
  //CCuda *cuda;
  void* cudaBuffer;

790
public:
Ogier Maitre's avatar
Ogier Maitre committed
791
  PopulationImpl(unsigned parentPopulationSize, unsigned offspringPopulationSize, float pCrossover, float pMutation, float pMutationPerGene, CRandomGenerator* rg, Parameters* params, CStats* stats);
792 793 794 795 796 797 798 799
        virtual ~PopulationImpl();
        void evaluateParentPopulation();
	void evaluateOffspringPopulation();
};

#endif /* PROBLEM_DEP_H */

\START_CUDA_MAKEFILE_TPL
kruger's avatar
kruger committed
800 801
NVCC= nvcc
CPPC= g++
802 803
LIBAESAE=$(EZ_PATH)libeasea/
CXXFLAGS+=-g -Wall -O2 -I$(LIBAESAE)include -I$(EZ_PATH)boost
Ogier Maitre's avatar
Ogier Maitre committed
804
LDFLAGS=$(EZ_PATH)boost/program_options.a $(LIBAESAE)libeasea.a -lpthread 
kruger's avatar
kruger committed
805 806 807 808 809 810 811 812 813 814 815 816 817 818



EASEA_SRC= EASEAIndividual.cpp
EASEA_MAIN_HDR= EASEA.cpp
EASEA_UC_HDR= EASEAIndividual.hpp

EASEA_HDR= $(EASEA_SRC:.cpp=.hpp) 

SRC= $(EASEA_SRC) $(EASEA_MAIN_HDR)
CUDA_SRC = EASEAIndividual.cu
HDR= $(EASEA_HDR) $(EASEA_UC_HDR)
OBJ= $(EASEA_SRC:.cpp=.o) $(EASEA_MAIN_HDR:.cpp=.o)

Ogier Maitre's avatar
Ogier Maitre committed
819 820 821
#USER MAKEFILE OPTIONS :
\INSERT_MAKEFILE_OPTION#END OF USER MAKEFILE OPTIONS

Ogier Maitre's avatar
Ogier Maitre committed
822 823
CPPFLAGS+= -I$(LIBAESAE)include -I$(EZ_PATH)boost -I/usr/local/cuda/include/
NVCCFLAGS+= #--ptxas-options="-v"# --gpu-architecture sm_23 --compiler-options -fpermissive 
Ogier Maitre's avatar
Ogier Maitre committed
824 825


kruger's avatar
kruger committed
826 827 828 829 830
BIN= EASEA
  
all:$(BIN)

$(BIN):$(OBJ)
831
	$(NVCC) $^ -o $@ $(LDFLAGS) -Xcompiler -fopenmp
kruger's avatar
kruger committed
832 833

%.o:%.cu
834
	$(NVCC) $(NVCCFLAGS) -o $@ $< -c -DTIMING $(CPPFLAGS) -g -Xcompiler -fopenmp 
kruger's avatar
kruger committed
835 836 837

easeaclean: clean
	rm -f Makefile EASEA.prm $(SRC) $(HDR) EASEA.mak $(CUDA_SRC) *.linkinfo EASEA.png EASEA.dat EASEA.vcproj EASEA.plot EASEA.r EASEA.csv EASEA.pop
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
clean:
	rm -f $(OBJ) $(BIN) 	
	
\START_VISUAL_TPL<?xml version="1.0" encoding="Windows-1252"?>
<VisualStudioProject
	ProjectType="Visual C++"
	Version="9,00"
	Name="EASEA"
	ProjectGUID="{E73D5A89-F262-4F0E-A876-3CF86175BC30}"
	RootNamespace="EASEA"
	Keyword="WIN32Proj"
	TargetFrameworkVersion="196613"
	>
	<Platforms>
		<Platform
			Name="WIN32"
		/>
	</Platforms>
	<ToolFiles>
		<ToolFile
			RelativePath="\CUDA_RULE_DIRcommon\Cuda.rules"
		/>
	</ToolFiles>
	<Configurations>
		<Configuration
			Name="Release|WIN32"
			OutputDirectory="$(SolutionDir)"
			IntermediateDirectory="$(ConfigurationName)"
			ConfigurationType="1"
			CharacterSet="1"
			WholeProgramOptimization="1"
			>
			<Tool
				Name="VCPreBuildEventTool"
			/>
			<Tool
				Name="VCCustomBuildTool"
			/>
			<Tool
				Name="CUDA Build Rule"
				Include="\EZ_PATHlibEasea"
				Keep="false"
				Runtime="0"
			/>
			<Tool
				Name="VCXMLDataGeneratorTool"
			/>
			<Tool
				Name="VCWebServiceProxyGeneratorTool"
			/>
			<Tool
				Name="VCMIDLTool"
			/>
			<Tool
				Name="VCCLCompilerTool"
				Optimization="2"
				EnableIntrinsicFunctions="true"
				AdditionalIncludeDirectories="&quot;\EZ_PATHlibEasea&quot;"
				PreprocessorDefinitions="WIN32;NDEBUG;_CONSOLE"
				RuntimeLibrary="0"
				EnableFunctionLevelLinking="true"
				UsePrecompiledHeader="0"
				WarningLevel="3"
				DebugInformationFormat="3"
			/>
			<Tool
				Name="VCManagedResourceCompilerTool"
			/>
			<Tool
				Name="VCResourceCompilerTool"
			/>
			<Tool
				Name="VCPreLinkEventTool"
			/>
			<Tool
				Name="VCLinkerTool"
				AdditionalDependencies="$(CUDA_LIB_PATH)\cudart.lib"
				LinkIncremental="1"
				AdditionalLibraryDirectories="&quot;\EZ_PATHlibEasea&quot;"
				GenerateDebugInformation="true"
				SubSystem="1"
				OptimizeReferences="2"
				EnableCOMDATFolding="2"
				TargetMachine="1"
			/>
			<Tool
				Name="VCALinkTool"
			/>
			<Tool
				Name="VCManifestTool"
			/>
			<Tool
				Name="VCXDCMakeTool"
			/>
			<Tool
				Name="VCBscMakeTool"
			/>
			<Tool
				Name="VCFxCopTool"
			/>
			<Tool
				Name="VCAppVerifierTool"
			/>
			<Tool
				Name="VCPostBuildEventTool"
			/>
		</Configuration>
	</Configurations>
	<References>
	</References>
	<Files>
		<Filter
			Name="Source Files"
			Filter="cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx"
			UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}"
			>
			<File
				RelativePath=".\EASEA.cpp"
				>
			</File>
			<File
				RelativePath=".\EASEAIndividual.cu"
				>
			</File>
		</Filter>
		<Filter
			Name="Header Files"
			Filter="h;hpp;hxx;hm;inl;inc;xsd"
			UniqueIdentifier="{93995380-89BD-4b04-88EB-625FBE52EBFB}"
			>
			<File
				RelativePath=".\EASEAIndividual.hpp"
				>
			</File>
		</Filter>
		<Filter
			Name="Resource Files"
			Filter="rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav"
			UniqueIdentifier="{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}"
			>
		</Filter>
	</Files>
	<Globals>
	</Globals>
</VisualStudioProject>

\START_EO_PARAM_TPL#****************************************
#
#  EASEA.prm
#
#  Parameter file generated by CUDA.tpl AESAE v1.0
#
#***************************************
# --seed=0   # -S : Random number seed. It is possible to give a specific seed.

######    Evolution Engine    ######
--popSize=\POP_SIZE # -P : Population Size
--nbOffspring=\OFF_SIZE # -O : Nb of offspring (percentage or absolute)

######    Stopping Criterions    #####
--nbGen=\NB_GEN #Nb of generations
--timeLimit=\TIME_LIMIT # Time Limit: desactivate with (0) (in Seconds)

######    Evolution Engine / Replacement    ######
--elite=\ELITE_SIZE  # Nb of elite parents (absolute)
--eliteType=\ELITISM # Strong (1) or weak (0) elitism (set elite to 0 for none)
--survivingParents=\SURV_PAR_SIZE # Nb of surviving parents (percentage or absolute)
--survivingOffspring=\SURV_OFF_SIZE  # Nb of surviving offspring (percentage or absolute)
--selectionOperator=\SELECTOR_OPERATOR # Selector: Deterministic, Tournament, Random, Roulette
--selectionPressure=\SELECT_PRM
--reduceParentsOperator=\RED_PAR_OPERATOR
--reduceParentsPressure=\RED_PAR_PRM
--reduceOffspringOperator=\RED_OFF_OPERATOR
--reduceOffspringPressure=\RED_OFF_PRM
--reduceFinalOperator=\RED_FINAL_OPERATOR
--reduceFinalPressure=\RED_FINAL_PRM

#####   Stats Ouput     #####
--printStats=\PRINT_STATS #print Stats to screen
Frédéric Krüger's avatar
Frédéric Krüger committed
1017
--plotStats=\PLOT_STATS #plot Stats 
1018
--generateCSVFile=\GENERATE_CSV_FILE
Frédéric Krüger's avatar
Frédéric Krüger committed
1019
--generatePlotScript=\GENERATE_GNUPLOT_SCRIPT
1020 1021
--generateRScript=\GENERATE_R_SCRIPT

kruger's avatar
kruger committed
1022 1023 1024 1025 1026 1027
#### Population save    ####
--savePopulation=\SAVE_POPULATION #save population to EASEA.pop file
--startFromFile=\START_FROM_FILE #start optimisation from EASEA.pop file

#### Remote Island Model ####
--remoteIslandModel=\REMOTE_ISLAND_MODEL #To initialize communications with remote AESAE's
1028 1029
--ipFile=\IP_FILE
--migrationProbability=\MIGRATION_PROBABILITY #Probability to send an individual every generation
Frédéric Krüger's avatar
Frédéric Krüger committed
1030
--serverPort=\SERVER_PORT
1031
\TEMPLATE_END