CUDA.tpl 30.5 KB
Newer Older
Ogier Maitre's avatar
Ogier Maitre committed
1
\TEMPLATE_START
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#ifdef WIN32
#define _CRT_SECURE_NO_WARNINGS
#pragma comment(lib, "libEasea.lib")
#pragma comment(lib, "Winmm.lib")
#endif
/**
 This is program entry for STD template for EASEA
*/

\ANALYSE_PARAMETERS
#include <stdlib.h>
#include <iostream>
#include <time.h>
#include "COptionParser.h"
#include "CRandomGenerator.h"
#include "CEvolutionaryAlgorithm.h"
#include "global.h"
#include "EASEAIndividual.hpp"

using namespace std;

/** Global variables for the whole algorithm */
CIndividual** pPopulation = NULL;
CIndividual* bBest = NULL;
float* pEZ_MUT_PROB = NULL;
float* pEZ_XOVER_PROB = NULL;
Frederic Kruger's avatar
Frederic Kruger committed
28
29
unsigned *EZ_NB_GEN;
unsigned *EZ_current_generation;
kruger's avatar
kruger committed
30
CEvolutionaryAlgorithm* EA;
31
32
33
34
35
36
37
38
39
40

int main(int argc, char** argv){


	parseArguments("EASEA.prm",argc,argv);

	ParametersImpl p;
	p.setDefaultParameters(argc,argv);
	CEvolutionaryAlgorithm* ea = p.newEvolutionaryAlgorithm();

kruger's avatar
kruger committed
41
42
	EA = ea;

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
	EASEAInit(argc,argv);

	CPopulation* pop = ea->getPopulation();

	ea->runEvolutionaryLoop();

	EASEAFinal(pop);

	delete pop;

#ifdef WIN32
	system("pause");
#endif
	return 0;
}

\START_CUDA_GENOME_CU_TPL
#ifdef _WIN32
#define _CRT_SECURE_NO_WARNINGS
#define WIN32
#endif

#include <fstream>
#ifndef WIN32
#include <sys/time.h>
#else
#include <time.h>
#endif
kruger's avatar
kruger committed
71
72
#include <string>
#include <sstream>
73
74
75
76
77
78
79
80
#include "CRandomGenerator.h"
#include "CPopulation.h"
#include "COptionParser.h"
#include "CStoppingCriterion.h"
#include "CEvolutionaryAlgorithm.h"
#include "global.h"
#include "CIndividual.h"
#include <vector_types.h>
Ogier Maitre's avatar
1.09rc2    
Ogier Maitre committed
81
#include "CCuda.h"
82
83
84


using namespace std;
85
extern "C" __global__ void cudaEvaluatePopulation(void* d_population, unsigned popSize, float* d_fitnesses);
86
87
88
89
#include "EASEAIndividual.hpp"
bool INSTEAD_EVAL_STEP = false;

CRandomGenerator* globalRandomGenerator;
kruger's avatar
kruger committed
90
extern CEvolutionaryAlgorithm *EA;
91
92
93

#define CUDA_TPL

Ogier Maitre's avatar
Ogier Maitre committed
94
struct gpuEvaluationData* gpuData;
95

Ogier Maitre's avatar
Ogier Maitre committed
96
97
98
int fstGpu = 0;
int lstGpu = 0;

99

Ogier Maitre's avatar
Ogier Maitre committed
100
struct gpuEvaluationData* globalGpuData;
101
102
103
104
105
106
107
108
109
110
111
112
113
114
float* fitnessTemp;  
bool freeGPU = false;
bool first_generation = true;
int num_gpus = 0;       // number of CUDA GPUs

PopulationImpl* Pop = NULL;

\INSERT_USER_DECLARATIONS
\ANALYSE_USER_CLASSES

\INSERT_USER_CLASSES

\INSERT_USER_FUNCTIONS

Ogier Maitre's avatar
Ogier Maitre committed
115

Ogier Maitre's avatar
Ogier Maitre committed
116
void dispatchPopulation(int populationSize){
Ogier Maitre's avatar
Ogier Maitre committed
117
118
119
120
121
122
123
124
125
126
127
128
  int noTotalMP = 0; // number of MP will be used to distribute the population
  int count = 0;

  //Recuperation of each device information's.
  for( int index = 0; index < num_gpus; index++){
    cudaDeviceProp deviceProp;
    cudaError_t lastError = cudaGetDeviceProperties(&deviceProp, index+fstGpu);
    if( lastError!=cudaSuccess ){
      std::cerr << "Cannot get device information for device no : " << index+fstGpu << std::endl;
      exit(-1);
    }

Ogier Maitre's avatar
Ogier Maitre committed
129
130
131
132
    globalGpuData[index].num_MP =  deviceProp.multiProcessorCount; 
    globalGpuData[index].num_Warp = deviceProp.warpSize;
    noTotalMP += globalGpuData[index].num_MP;
    globalGpuData[index].gpuProp = deviceProp;
Ogier Maitre's avatar
Ogier Maitre committed
133
134
135
136
  }

  for( int index = 0; index < num_gpus; index++){

Ogier Maitre's avatar
Ogier Maitre committed
137
    globalGpuData[index].indiv_start = count;
Ogier Maitre's avatar
Ogier Maitre committed
138

Ogier Maitre's avatar
Ogier Maitre committed
139
140
141
142
    if(index != (num_gpus - 1)) {
      globalGpuData[index].sh_pop_size = ceil((float)populationSize * (((float)globalGpuData[index].num_MP) / (float)noTotalMP) );
    
    }
Ogier Maitre's avatar
Ogier Maitre committed
143
144
    //On the last card we are going to place the remaining individuals.  
    else 
Ogier Maitre's avatar
Ogier Maitre committed
145
      globalGpuData[index].sh_pop_size = populationSize - count;
Ogier Maitre's avatar
Ogier Maitre committed
146
	     
Ogier Maitre's avatar
Ogier Maitre committed
147
    count += globalGpuData[index].sh_pop_size;	     
Ogier Maitre's avatar
Ogier Maitre committed
148
  }
Ogier Maitre's avatar
Ogier Maitre committed
149
150
151
152
}

void cudaPreliminaryProcess(struct gpuEvaluationData* localGpuData, int populationSize){

Ogier Maitre's avatar
Ogier Maitre committed
153
154
155
156

  //  here we will compute how to spread the population to evaluate on GPGPU cores

  struct cudaFuncAttributes attr;
157
  CUDA_SAFE_CALL(cudaFuncGetAttributes(&attr,cudaEvaluatePopulation));
Ogier Maitre's avatar
Ogier Maitre committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

  int thLimit = attr.maxThreadsPerBlock;
  int N = localGpuData->sh_pop_size;
  int w = localGpuData->gpuProp.warpSize;

  int b=0,t=0;
	      
  do{
    b += localGpuData->num_MP;
    t = ceilf( MIN(thLimit,(float)N/b)/w)*w;
  } while( (b*t<N) || t>thLimit );
	      
  if( localGpuData->d_population!=NULL ){ cudaFree(localGpuData->d_population); }
  if( localGpuData->d_fitness!=NULL ){ cudaFree(localGpuData->d_fitness); }

  CUDA_SAFE_CALL(cudaMalloc(&localGpuData->d_population,localGpuData->sh_pop_size*(sizeof(IndividualImpl))));
  CUDA_SAFE_CALL(cudaMalloc(((void**)&localGpuData->d_fitness),localGpuData->sh_pop_size*sizeof(float)));


  std::cout << "card (" << localGpuData->threadId << ") " << localGpuData->gpuProp.name << " has " << localGpuData->sh_pop_size << " individual to evaluate" 
	    << ": t=" << t << " b: " << b << std::endl;
   localGpuData->dimGrid = b;
   localGpuData->dimBlock = t;

182
183
}

Frederic Kruger's avatar
Frederic Kruger committed
184
__device__ __host__ inline IndividualImpl* INDIVIDUAL_ACCESS(void* buffer,unsigned id){
185
186
187
  return (IndividualImpl*)buffer+id;
}

Ogier Maitre's avatar
Ogier Maitre committed
188
__device__ float cudaEvaluate(void* devBuffer, unsigned id){
189
190
191
192
  \INSERT_CUDA_EVALUATOR
}
  

Ogier Maitre's avatar
Ogier Maitre committed
193
extern "C" 
Ogier Maitre's avatar
Ogier Maitre committed
194
__global__ void cudaEvaluatePopulation(void* d_population, unsigned popSize, float* d_fitnesses){
195

Frederic Kruger's avatar
Frederic Kruger committed
196
        unsigned id = (blockDim.x*blockIdx.x)+threadIdx.x;  // id of the individual computed by this thread
197
198
199
200
201

  	// escaping for the last block
        if( id >= popSize ) return;
  
        //void* indiv = ((char*)d_population)+id*(\GENOME_SIZE+sizeof(IndividualImpl*)); // compute the offset of the current individual
Ogier Maitre's avatar
Ogier Maitre committed
202
        d_fitnesses[id] = cudaEvaluate(d_population,id);
203
204
205
206
207
208
209
}



void* gpuThreadMain(void* arg){

  cudaError_t lastError;
Ogier Maitre's avatar
Ogier Maitre committed
210
211
  struct gpuEvaluationData* localGpuData = (struct gpuEvaluationData*)arg;
  //std::cout << " gpuId : " << localGpuData->gpuId << std::endl;
Ogier Maitre's avatar
Ogier Maitre committed
212
213
214

  lastError = cudaSetDevice(localGpuData->gpuId);

Ogier Maitre's avatar
Ogier Maitre committed
215
  if( lastError != cudaSuccess ){
Ogier Maitre's avatar
Ogier Maitre committed
216
    std::cerr << "Error, cannot set device properly for device no " << localGpuData->gpuId << std::endl;
Ogier Maitre's avatar
Ogier Maitre committed
217
218
219
    exit(-1);
  }
  
220
221
  int nbr_cudaPreliminaryProcess = 2;

Ogier Maitre's avatar
Ogier Maitre committed
222
  //struct my_struct_gpu* localGpuInfo = gpu_infos+localArg->threadId;
Ogier Maitre's avatar
Ogier Maitre committed
223
224
225


  if( lastError != cudaSuccess ){
Ogier Maitre's avatar
Ogier Maitre committed
226
    std::cerr << "Error, cannot get function attribute for cudaEvaluatePopulation on card: " << localGpuData->gpuProp.name  << std::endl;
Ogier Maitre's avatar
Ogier Maitre committed
227
228
229
    exit(-1);
  }
  
230
231
232
233
234
  // Because of the context of each GPU thread, we have to put all user's CUDA 
  // initialisation here if we want to use them in the GPU, otherwise they are
  // not found in the GPU context
  \INSERT_USER_CUDA

235
236
  // Wait for population to evaluate
   while(1){
Ogier Maitre's avatar
Ogier Maitre committed
237
238
	    sem_wait(&localGpuData->sem_in);

239
	    if( freeGPU ) {
Ogier Maitre's avatar
Ogier Maitre committed
240
241
242
	      // do we need to free gpu memory ?
	      cudaFree(localGpuData->d_fitness);
	      cudaFree(localGpuData->d_population);
Ogier Maitre's avatar
Ogier Maitre committed
243
	      break;
244
	    }
Ogier Maitre's avatar
Ogier Maitre committed
245

Ogier Maitre's avatar
Ogier Maitre committed
246
	    if(nbr_cudaPreliminaryProcess > 0) {
Ogier Maitre's avatar
Ogier Maitre committed
247
	      
Ogier Maitre's avatar
Ogier Maitre committed
248
249
250
251
252
	      if( nbr_cudaPreliminaryProcess==2 ) 
		cudaPreliminaryProcess(localGpuData,EA->population->parentPopulationSize);
	      else {
		cudaPreliminaryProcess(localGpuData,EA->population->offspringPopulationSize);
	      }
Ogier Maitre's avatar
Ogier Maitre committed
253
254
	      nbr_cudaPreliminaryProcess--;

Ogier Maitre's avatar
Ogier Maitre committed
255
	      if( localGpuData->dimBlock*localGpuData->dimGrid!=localGpuData->sh_pop_size ){
Ogier Maitre's avatar
Ogier Maitre committed
256
257
		// due to lack of individuals, the population distribution is not optimial according to core organisation
		// warn the user and propose a proper configuration
Ogier Maitre's avatar
Ogier Maitre committed
258
259
		std::cerr << "Warning, population distribution is not optimial, consider adding " << (localGpuData->dimBlock*localGpuData->dimGrid-localGpuData->sh_pop_size) 
			  << " individuals to " << (nbr_cudaPreliminaryProcess==2?"parent":"offspring")<<" population" << std::endl;
Ogier Maitre's avatar
Ogier Maitre committed
260
261
	      }
            }
Ogier Maitre's avatar
Ogier Maitre committed
262
263
	    
	    // transfer data to GPU memory
Ogier Maitre's avatar
Ogier Maitre committed
264
            lastError = cudaMemcpy(localGpuData->d_population,(IndividualImpl*)(Pop->cudaBuffer)+localGpuData->indiv_start,
Ogier Maitre's avatar
Ogier Maitre committed
265
266
267
				   (sizeof(IndividualImpl)*localGpuData->sh_pop_size),cudaMemcpyHostToDevice);

	    CUDA_SAFE_CALL(lastError);
Ogier Maitre's avatar
Ogier Maitre committed
268
269
270
	    
	    
	    //std::cout << localGpuData->sh_pop_size << ";" << localGpuData->dimGrid << ";"<<  localGpuData->dimBlock << std::endl;
271
				      
Ogier Maitre's avatar
Ogier Maitre committed
272
	    // the real GPU computation (kernel launch)
Ogier Maitre's avatar
Ogier Maitre committed
273
	    cudaEvaluatePopulation<<< localGpuData->dimGrid, localGpuData->dimBlock>>>(localGpuData->d_population, localGpuData->sh_pop_size, localGpuData->d_fitness);
Ogier Maitre's avatar
Ogier Maitre committed
274
275
276
	    lastError = cudaGetLastError();
	    CUDA_SAFE_CALL(lastError);

Ogier Maitre's avatar
Ogier Maitre committed
277
278
279
	    if( cudaGetLastError()!=cudaSuccess ){ std::cerr << "Error during synchronize" << std::endl; }

	    // be sure the GPU has finished computing evaluations, and get results to CPU
280
	    lastError = cudaThreadSynchronize();
Ogier Maitre's avatar
Ogier Maitre committed
281
	    if( lastError!=cudaSuccess ){ std::cerr << "Error during synchronize" << std::endl; }
Ogier Maitre's avatar
Ogier Maitre committed
282
	    lastError = cudaMemcpy(fitnessTemp + localGpuData->indiv_start, localGpuData->d_fitness, localGpuData->sh_pop_size*sizeof(float), cudaMemcpyDeviceToHost);
283
	    
Ogier Maitre's avatar
Ogier Maitre committed
284
	    // this thread has finished its phase, so lets tell it to the main thread
Ogier Maitre's avatar
Ogier Maitre committed
285
	    sem_post(&localGpuData->sem_out);
286
   }
Ogier Maitre's avatar
Ogier Maitre committed
287
  sem_post(&localGpuData->sem_out);
288
289
290
291
292
293
  fflush(stdout);
  return NULL;
}
				
void wake_up_gpu_thread(){
	for( int i=0 ; i<num_gpus ; i++ ){
Ogier Maitre's avatar
Ogier Maitre committed
294
		sem_post(&(globalGpuData[i].sem_in));
Ogier Maitre's avatar
Ogier Maitre committed
295
296
297
	
  	}
	for( int i=0 ; i<num_gpus ; i++ ){
Ogier Maitre's avatar
Ogier Maitre committed
298
	  sem_wait(&globalGpuData[i].sem_out);
299
  	}
Ogier Maitre's avatar
Ogier Maitre committed
300

301
302
303
304
}
				
void InitialiseGPUs(){
	//MultiGPU part on one CPU
Ogier Maitre's avatar
Ogier Maitre committed
305
	globalGpuData = (struct gpuEvaluationData*)malloc(sizeof(struct gpuEvaluationData)*num_gpus);
306
	pthread_t* t = (pthread_t*)malloc(sizeof(pthread_t)*num_gpus);
Ogier Maitre's avatar
Ogier Maitre committed
307
	int gpuId = fstGpu;
308
309
	//here we want to create on thread per GPU
	for( int i=0 ; i<num_gpus ; i++ ){
Ogier Maitre's avatar
Ogier Maitre committed
310
	  
Ogier Maitre's avatar
Ogier Maitre committed
311
312
		globalGpuData[i].d_fitness = NULL;
		globalGpuData[i].d_population = NULL;
Ogier Maitre's avatar
Ogier Maitre committed
313
		
Ogier Maitre's avatar
Ogier Maitre committed
314
		globalGpuData[i].gpuId = gpuId++;
Ogier Maitre's avatar
Ogier Maitre committed
315

Ogier Maitre's avatar
Ogier Maitre committed
316
317
318
319
	  	globalGpuData[i].threadId = i;
	  	sem_init(&globalGpuData[i].sem_in,0,0);
	  	sem_init(&globalGpuData[i].sem_out,0,0);
	  	if( pthread_create(t+i,NULL,gpuThreadMain,globalGpuData+i) ){ perror("pthread_create : "); }
320
321
322
323
324
325
326
327
328
329
330
	}
}

\INSERT_INITIALISATION_FUNCTION
\INSERT_FINALIZATION_FUNCTION

void evale_pop_chunk(CIndividual** population, int popSize){
  \INSTEAD_EVAL_FUNCTION
}

void EASEAInit(int argc, char** argv){
Ogier Maitre's avatar
Ogier Maitre committed
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
  fstGpu = setVariable("fstgpu",0);
  lstGpu = setVariable("lstgpu",0);

	if( lstGpu==fstGpu && fstGpu==0 ){
	  // use all gpus available
	  cudaGetDeviceCount(&num_gpus);
	}
	else{
	  int queryGpuNum;
	  cudaGetDeviceCount(&queryGpuNum);
	  if( (lstGpu - fstGpu)>queryGpuNum || fstGpu<0 || lstGpu>queryGpuNum){
	    std::cerr << "Error, not enough devices found on the system ("<< queryGpuNum <<") to satisfy user configuration ["<<fstGpu<<","<<lstGpu<<"["<<std::endl;
	    exit(-1);
	  }
	  else{
	    num_gpus = lstGpu-fstGpu;
	  }
	}

Ogier Maitre's avatar
Ogier Maitre committed
350
	//globalGpuData = (struct gpuEvaluationData*)malloc(sizeof(struct gpuEvaluationData)*num_gpus);
351
352
353
354
355
356
357
	InitialiseGPUs();
	\INSERT_INIT_FCT_CALL
}

void EASEAFinal(CPopulation* pop){
	freeGPU=true;
	wake_up_gpu_thread();
Ogier Maitre's avatar
Ogier Maitre committed
358
        free(globalGpuData);
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
	
	\INSERT_FINALIZATION_FCT_CALL;
}

void AESAEBeginningGenerationFunction(CEvolutionaryAlgorithm* evolutionaryAlgorithm){
	\INSERT_BEGIN_GENERATION_FUNCTION
}

void AESAEEndGenerationFunction(CEvolutionaryAlgorithm* evolutionaryAlgorithm){
	\INSERT_END_GENERATION_FUNCTION
}

void AESAEGenerationFunctionBeforeReplacement(CEvolutionaryAlgorithm* evolutionaryAlgorithm){
        \INSERT_GENERATION_FUNCTION_BEFORE_REPLACEMENT
}


IndividualImpl::IndividualImpl() : CIndividual() {
  \GENOME_CTOR 
  \INSERT_EO_INITIALISER
  valid = false;
Frédéric Krüger's avatar
Frédéric Krüger committed
380
  isImmigrant = false;
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
}

CIndividual* IndividualImpl::clone(){
	return new IndividualImpl(*this);
}

IndividualImpl::~IndividualImpl(){
  \GENOME_DTOR
}


float IndividualImpl::evaluate(){
  if(valid)
    return fitness;
  else{
    valid = true;
    \INSERT_EVALUATOR
  }
}

Frederic Kruger's avatar
Frederic Kruger committed
401
402
403
404
405
void IndividualImpl::boundChecking(){
        \INSERT_BOUND_CHECKING
}


kruger's avatar
kruger committed
406
407
408
string IndividualImpl::serialize(){
    ostringstream AESAE_Line(ios_base::app);
    \GENOME_SERIAL
409
    AESAE_Line << this->fitness;
kruger's avatar
kruger committed
410
411
412
413
414
415
416
    return AESAE_Line.str();
}

void IndividualImpl::deserialize(string Line){
    istringstream AESAE_Line(Line);
    string line;
    \GENOME_DESERIAL
417
418
    AESAE_Line >> this->fitness;
    this->valid=true;
Frédéric Krüger's avatar
Frédéric Krüger committed
419
    this->isImmigrant=false;
kruger's avatar
kruger committed
420
421
}

422
423
424
425
426
427
428
429
430
431
432
IndividualImpl::IndividualImpl(const IndividualImpl& genome){

  // ********************
  // Problem specific part
  \COPY_CTOR


  // ********************
  // Generic part
  this->valid = genome.valid;
  this->fitness = genome.fitness;
Frédéric Krüger's avatar
Frédéric Krüger committed
433
  this->isImmigrant = false;
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
}


CIndividual* IndividualImpl::crossover(CIndividual** ps){
	// ********************
	// Generic part
	IndividualImpl** tmp = (IndividualImpl**)ps;
	IndividualImpl parent1(*this);
	IndividualImpl parent2(*tmp[0]);
	IndividualImpl child(*this);

	//DEBUG_PRT("Xover");
	/*   cout << "p1 : " << parent1 << endl; */
	/*   cout << "p2 : " << parent2 << endl; */

	// ********************
	// Problem specific part
  	\INSERT_CROSSOVER


	child.valid = false;
	/*   cout << "child : " << child << endl; */
	return new IndividualImpl(child);
}


void IndividualImpl::printOn(std::ostream& os) const{
	\INSERT_DISPLAY
}

std::ostream& operator << (std::ostream& O, const IndividualImpl& B)
{
  // ********************
  // Problem specific part
  O << "\nIndividualImpl : "<< std::endl;
  O << "\t\t\t";
  B.printOn(O);

  if( B.valid ) O << "\t\t\tfitness : " << B.fitness;
  else O << "fitness is not yet computed" << std::endl;
  return O;
}


Frederic Kruger's avatar
Frederic Kruger committed
478
unsigned IndividualImpl::mutate( float pMutationPerGene ){
479
480
481
482
483
484
485
486
487
488
  this->valid=false;


  // ********************
  // Problem specific part
  \INSERT_MUTATOR
}


void PopulationImpl::evaluateParentPopulation(){
Frederic Kruger's avatar
Frederic Kruger committed
489
        unsigned actualPopulationSize = this->actualParentPopulationSize;
490
491
	fitnessTemp = new float[actualPopulationSize];
	int index;
Ogier Maitre's avatar
Ogier Maitre committed
492
493
494
495
496
497
498
	static bool dispatchedParents = false;
	
	if( dispatchedParents==false ){
	  dispatchPopulation(EA->population->parentPopulationSize);
	  dispatchedParents=true;
	}

499
500
501
502
503
504
505
506
507
508
509
510
511
512
	       	
 	wake_up_gpu_thread(); 

 	
	for( index=(actualPopulationSize-1); index>=0; index--){
		this->parents[index]->fitness = fitnessTemp[index];
		this->parents[index]->valid = true;
	}  

        delete[](fitnessTemp);

}

void PopulationImpl::evaluateOffspringPopulation(){
Frederic Kruger's avatar
Frederic Kruger committed
513
	unsigned actualPopulationSize = this->actualOffspringPopulationSize;
514
515
	fitnessTemp = new float[actualPopulationSize];
	int index;
Ogier Maitre's avatar
Ogier Maitre committed
516
517
518
519
520
521
	static bool dispatchedOffspring = false;
	
	if( dispatchedOffspring==false ){
	  dispatchPopulation(EA->population->offspringPopulationSize);
	  dispatchedOffspring=true;
	}
522
523

        for( index=(actualPopulationSize-1); index>=0; index--)
Ogier Maitre's avatar
Ogier Maitre committed
524
	    ((IndividualImpl*)this->offsprings[index])->copyToCudaBuffer(this->cudaBuffer,index);
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540

        wake_up_gpu_thread(); 

	for( index=(actualPopulationSize-1); index>=0; index--){
		this->offsprings[index]->fitness = fitnessTemp[index];
		this->offsprings[index]->valid = true;
	}	  
 
        first_generation = false;
        delete[](fitnessTemp);
}





kruger's avatar
kruger committed
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
void ParametersImpl::setDefaultParameters(int argc, char** argv){
        this->minimizing = \MINIMAXI;
        this->nbGen = setVariable("nbGen",(int)\NB_GEN);

        seed = setVariable("seed",(int)time(0));
        globalRandomGenerator = new CRandomGenerator(seed);
        this->randomGenerator = globalRandomGenerator;

        selectionOperator = getSelectionOperator(setVariable("selectionOperator","\SELECTOR_OPERATOR"), this->minimizing, globalRandomGenerator);
        replacementOperator = getSelectionOperator(setVariable("reduceFinalOperator","\RED_FINAL_OPERATOR"),this->minimizing, globalRandomGenerator);
        parentReductionOperator = getSelectionOperator(setVariable("reduceParentsOperator","\RED_PAR_OPERATOR"),this->minimizing, globalRandomGenerator);
        offspringReductionOperator = getSelectionOperator(setVariable("reduceOffspringOperator","\RED_OFF_OPERATOR"),this->minimizing, globalRandomGenerator);
        selectionPressure = setVariable("selectionPressure",(float)\SELECT_PRM);
        replacementPressure = setVariable("reduceFinalPressure",(float)\RED_FINAL_PRM);
        parentReductionPressure = setVariable("reduceParentsPressure",(float)\RED_PAR_PRM);
        offspringReductionPressure = setVariable("reduceOffspringPressure",(float)\RED_OFF_PRM);
        pCrossover = \XOVER_PROB;
        pMutation = \MUT_PROB;
        pMutationPerGene = 0.05;

        parentPopulationSize = setVariable("popSize",(int)\POP_SIZE);
        offspringPopulationSize = setVariable("nbOffspring",(int)\OFF_SIZE);


        parentReductionSize = setReductionSizes(parentPopulationSize, setVariable("survivingParents",(float)\SURV_PAR_SIZE));
        offspringReductionSize = setReductionSizes(offspringPopulationSize, setVariable("survivingOffspring",(float)\SURV_OFF_SIZE));

        this->elitSize = setVariable("elite",(int)\ELITE_SIZE);
        this->strongElitism = setVariable("eliteType",(int)\ELITISM);

        if((this->parentReductionSize + this->offspringReductionSize) < this->parentPopulationSize){
                printf("*WARNING* parentReductionSize + offspringReductionSize < parentPopulationSize\n");
                printf("*WARNING* change Sizes in .prm or .ez\n");
                printf("EXITING\n");
                exit(1);
        }
        if((this->parentPopulationSize - this->parentReductionSize)>this->parentPopulationSize-this->elitSize){
                printf("*WARNING* parentPopulationSize - parentReductionSize > parentPopulationSize - elitSize\n");
                printf("*WARNING* change Sizes in .prm or .ez\n");
                printf("EXITING\n");
                exit(1);
        }
        if(!this->strongElitism && ((this->offspringPopulationSize - this->offspringReductionSize)>this->offspringPopulationSize-this->elitSize)){
                printf("*WARNING* offspringPopulationSize - offspringReductionSize > offspringPopulationSize - elitSize\n");
                printf("*WARNING* change Sizes in .prm or .ez\n");
                printf("EXITING\n");
                exit(1);
        }
        if(offspringReductionSize<offspringPopulationSize) offspringReduction = true;
        else offspringReduction = false;

        if(parentReductionSize<parentPopulationSize) parentReduction = true;
        else parentReduction = false;

        generationalCriterion = new CGenerationalCriterion(setVariable("nbGen",(int)\NB_GEN));
        controlCStopingCriterion = new CControlCStopingCriterion();
        timeCriterion = new CTimeCriterion(setVariable("timeLimit",\TIME_LIMIT));

	this->optimise=0;

        this->printStats = setVariable("printStats",\PRINT_STATS);
        this->generateCSVFile = setVariable("generateCSVFile",\GENERATE_CSV_FILE);
Frédéric Krüger's avatar
Frédéric Krüger committed
603
        this->generatePlotScript = setVariable("generatePlotScript",\GENERATE_GNUPLOT_SCRIPT);
kruger's avatar
kruger committed
604
605
606
607
608
609
610
611
612
613
614
        this->generateRScript = setVariable("generateRScript",\GENERATE_R_SCRIPT);
        this->plotStats = setVariable("plotStats",\PLOT_STATS);
	this->printInitialPopulation = setVariable("printInitialPopulation",0);
	this->printFinalPopulation = setVariable("printFinalPopulation",0);
	this->savePopulation = setVariable("savePopulation",\SAVE_POPULATION);
	this->startFromFile = setVariable("startFromFile",\START_FROM_FILE);

        this->outputFilename = (char*)"EASEA";
        this->plotOutputFilename = (char*)"EASEA.png";

	this->remoteIslandModel = setVariable("remoteIslandModel",\REMOTE_ISLAND_MODEL);
Joseph Pallamidessi's avatar
Joseph Pallamidessi committed
615
616
617
618
	std::string* ipFilename=new std::string();
	*ipFilename=setVariable("ipFile","\IP_FILE");
	
	this->ipFile =(char*)ipFilename->c_str();
Frédéric Krüger's avatar
Frédéric Krüger committed
619
620
    this->migrationProbability = setVariable("migrationProbability",(float)\MIGRATION_PROBABILITY);
    this->serverPort = setVariable("serverPort",\SERVER_PORT);
kruger's avatar
kruger committed
621

622
623
624
625
626
627
}

CEvolutionaryAlgorithm* ParametersImpl::newEvolutionaryAlgorithm(){

	pEZ_MUT_PROB = &pMutationPerGene;
	pEZ_XOVER_PROB = &pCrossover;
Frederic Kruger's avatar
Frederic Kruger committed
628
	EZ_NB_GEN = (unsigned*)setVariable("nbGen",\NB_GEN);
629
630
631
632
633
634
635
636
637
638
639
640
641
642
	EZ_current_generation=0;

	CEvolutionaryAlgorithm* ea = new EvolutionaryAlgorithmImpl(this);
	generationalCriterion->setCounterEa(ea->getCurrentGenerationPtr());
	 ea->addStoppingCriterion(generationalCriterion);
	ea->addStoppingCriterion(controlCStopingCriterion);
	ea->addStoppingCriterion(timeCriterion);

	  EZ_NB_GEN=((CGenerationalCriterion*)ea->stoppingCriteria[0])->getGenerationalLimit();
	  EZ_current_generation=&(ea->currentGeneration);

	 return ea;
}

Frederic Kruger's avatar
Frederic Kruger committed
643
inline void IndividualImpl::copyToCudaBuffer(void* buffer, unsigned id){
644
645
646
647
648
649
650
651
652
  
 memcpy(((IndividualImpl*)buffer)+id,this,sizeof(IndividualImpl)); 
  
}

void EvolutionaryAlgorithmImpl::initializeParentPopulation(){
    //DEBUG_PRT("Creation of %lu/%lu parents (other could have been loaded from input file)",this->params->parentPopulationSize-this->params->actualParentPopulationSize,this->params->parentPopulationSize);
    int index,Size = this->params->parentPopulationSize;
    
kruger's avatar
kruger committed
653
654
655
656
657
658
659
    if(this->params->startFromFile){
          ifstream AESAE_File("EASEA.pop");
          string AESAE_Line;
          for( index=(Size-1); index>=0; index--) {
             getline(AESAE_File, AESAE_Line);
            this->population->addIndividualParentPopulation(new IndividualImpl(),index);
            ((IndividualImpl*)this->population->parents[index])->deserialize(AESAE_Line);
Ogier Maitre's avatar
Ogier Maitre committed
660
            ((IndividualImpl*)this->population->parents[index])->copyToCudaBuffer(((PopulationImpl*)this->population)->cudaBuffer,index);
kruger's avatar
kruger committed
661
662
663
664
665
666
         }

        }
        else{
                for( index=(Size-1); index>=0; index--) {
                         this->population->addIndividualParentPopulation(new IndividualImpl(),index);
Ogier Maitre's avatar
Ogier Maitre committed
667
                        ((IndividualImpl*)this->population->parents[index])->copyToCudaBuffer(((PopulationImpl*)this->population)->cudaBuffer,index);
kruger's avatar
kruger committed
668
669
                }
    }
670
671
672
673
674
675
676
    
    this->population->actualOffspringPopulationSize = 0;
    this->population->actualParentPopulationSize = Size;
}


EvolutionaryAlgorithmImpl::EvolutionaryAlgorithmImpl(Parameters* params) : CEvolutionaryAlgorithm(params){
Ogier Maitre's avatar
Ogier Maitre committed
677
678

  // warning cstats parameter is null
679
680
681
682
683
  this->population = (CPopulation*)new
  PopulationImpl( this->params->parentPopulationSize,this->params->offspringPopulationSize,
                  this->params->pCrossover,this->params->pMutation,this->params->pMutationPerGene,
                  this->params->randomGenerator,this->params,this->cstats);

Ogier Maitre's avatar
Ogier Maitre committed
684
685
686
687
688
  int popSize = (params->parentPopulationSize>params->offspringPopulationSize?params->parentPopulationSize:params->offspringPopulationSize);
  ((PopulationImpl*)this->population)->cudaBuffer = (void*)malloc(sizeof(IndividualImpl)*( popSize ));
  
  // = new CCuda(params->parentPopulationSize, params->offspringPopulationSize, sizeof(IndividualImpl));
  Pop = ((PopulationImpl*)this->population);
689
690
691
692
693
694
}

EvolutionaryAlgorithmImpl::~EvolutionaryAlgorithmImpl(){

}

Ogier Maitre's avatar
Ogier Maitre committed
695
PopulationImpl::PopulationImpl(unsigned parentPopulationSize, unsigned offspringPopulationSize, float pCrossover, float pMutation, float pMutationPerGene, CRandomGenerator* rg, Parameters* params, CStats* stats) : CPopulation(parentPopulationSize, offspringPopulationSize, pCrossover, pMutation, pMutationPerGene, rg, params, stats){
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
	;
}

PopulationImpl::~PopulationImpl(){
}


\START_CUDA_GENOME_H_TPL

#ifndef PROBLEM_DEP_H
#define PROBLEM_DEP_H

//#include "CRandomGenerator.h"
#include <stdlib.h>
#include <iostream>
#include <CIndividual.h>
#include <Parameters.h>
kruger's avatar
kruger committed
713
#include <string>
Ogier Maitre's avatar
Ogier Maitre committed
714
#include <CStats.h>
kruger's avatar
kruger committed
715
716
717

using namespace std;

718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
class CRandomGenerator;
class CSelectionOperator;
class CGenerationalCriterion;
class CEvolutionaryAlgorithm;
class CPopulation;
class Parameters;
class CCuda;


\INSERT_USER_CLASSES_DEFINITIONS

class IndividualImpl : public CIndividual {

public: // in EASEA the genome is public (for user functions,...)
	// Class members
  	\INSERT_GENOME


public:
	IndividualImpl();
	IndividualImpl(const IndividualImpl& indiv);
	virtual ~IndividualImpl();
	float evaluate();
Frederic Kruger's avatar
Frederic Kruger committed
741
	static unsigned getCrossoverArrity(){ return 2; }
742
743
744
745
746
	float getFitness(){ return this->fitness; }
	CIndividual* crossover(CIndividual** p2);
	void printOn(std::ostream& O) const;
	CIndividual* clone();

Frederic Kruger's avatar
Frederic Kruger committed
747
	unsigned mutate(float pMutationPerGene);
Frederic Kruger's avatar
Frederic Kruger committed
748
749
750

	void boundChecking();

kruger's avatar
kruger committed
751
752
	string serialize();
	void deserialize(string AESAE_Line);
Frederic Kruger's avatar
Frederic Kruger committed
753
	void copyToCudaBuffer(void* buffer, unsigned id);
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786

	friend std::ostream& operator << (std::ostream& O, const IndividualImpl& B) ;
	void initRandomGenerator(CRandomGenerator* rg){ IndividualImpl::rg = rg;}
};


class ParametersImpl : public Parameters {
public:
	void setDefaultParameters(int argc, char** argv);
	CEvolutionaryAlgorithm* newEvolutionaryAlgorithm();
};

/**
 * @TODO ces functions devraient s'appeler weierstrassInit, weierstrassFinal etc... (en gros EASEAFinal dans le tpl).
 *
 */

void EASEAInit(int argc, char** argv);
void EASEAFinal(CPopulation* pop);
void EASEABeginningGenerationFunction(CEvolutionaryAlgorithm* evolutionaryAlgorithm);
void EASEAEndGenerationFunction(CEvolutionaryAlgorithm* evolutionaryAlgorithm);
void EASEAGenerationFunctionBeforeReplacement(CEvolutionaryAlgorithm* evolutionaryAlgorithm);


class EvolutionaryAlgorithmImpl: public CEvolutionaryAlgorithm {
public:
	EvolutionaryAlgorithmImpl(Parameters* params);
	virtual ~EvolutionaryAlgorithmImpl();
	void initializeParentPopulation();
};

class PopulationImpl: public CPopulation {
public:
Ogier Maitre's avatar
Ogier Maitre committed
787
788
789
  //CCuda *cuda;
  void* cudaBuffer;

790
public:
Ogier Maitre's avatar
Ogier Maitre committed
791
  PopulationImpl(unsigned parentPopulationSize, unsigned offspringPopulationSize, float pCrossover, float pMutation, float pMutationPerGene, CRandomGenerator* rg, Parameters* params, CStats* stats);
792
793
794
795
796
797
798
799
        virtual ~PopulationImpl();
        void evaluateParentPopulation();
	void evaluateOffspringPopulation();
};

#endif /* PROBLEM_DEP_H */

\START_CUDA_MAKEFILE_TPL
kruger's avatar
kruger committed
800
801
NVCC= nvcc
CPPC= g++
802
803
LIBAESAE=$(EZ_PATH)libeasea/
CXXFLAGS+=-g -Wall -O2 -I$(LIBAESAE)include -I$(EZ_PATH)boost
Ogier Maitre's avatar
Ogier Maitre committed
804
LDFLAGS=$(EZ_PATH)boost/program_options.a $(LIBAESAE)libeasea.a -lpthread 
kruger's avatar
kruger committed
805
806
807
808
809
810
811
812
813
814
815
816
817
818



EASEA_SRC= EASEAIndividual.cpp
EASEA_MAIN_HDR= EASEA.cpp
EASEA_UC_HDR= EASEAIndividual.hpp

EASEA_HDR= $(EASEA_SRC:.cpp=.hpp) 

SRC= $(EASEA_SRC) $(EASEA_MAIN_HDR)
CUDA_SRC = EASEAIndividual.cu
HDR= $(EASEA_HDR) $(EASEA_UC_HDR)
OBJ= $(EASEA_SRC:.cpp=.o) $(EASEA_MAIN_HDR:.cpp=.o)

Ogier Maitre's avatar
Ogier Maitre committed
819
820
821
#USER MAKEFILE OPTIONS :
\INSERT_MAKEFILE_OPTION#END OF USER MAKEFILE OPTIONS

Ogier Maitre's avatar
Ogier Maitre committed
822
823
CPPFLAGS+= -I$(LIBAESAE)include -I$(EZ_PATH)boost -I/usr/local/cuda/include/
NVCCFLAGS+= #--ptxas-options="-v"# --gpu-architecture sm_23 --compiler-options -fpermissive 
Ogier Maitre's avatar
Ogier Maitre committed
824
825


kruger's avatar
kruger committed
826
827
828
829
830
831
832
833
834
835
836
837
BIN= EASEA
  
all:$(BIN)

$(BIN):$(OBJ)
	$(NVCC) $^ -o $@ $(LDFLAGS) 

%.o:%.cu
	$(NVCC) $(NVCCFLAGS) -o $@ $< -c -DTIMING $(CPPFLAGS) -g -Xcompiler -Wall

easeaclean: clean
	rm -f Makefile EASEA.prm $(SRC) $(HDR) EASEA.mak $(CUDA_SRC) *.linkinfo EASEA.png EASEA.dat EASEA.vcproj EASEA.plot EASEA.r EASEA.csv EASEA.pop
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
clean:
	rm -f $(OBJ) $(BIN) 	
	
\START_VISUAL_TPL<?xml version="1.0" encoding="Windows-1252"?>
<VisualStudioProject
	ProjectType="Visual C++"
	Version="9,00"
	Name="EASEA"
	ProjectGUID="{E73D5A89-F262-4F0E-A876-3CF86175BC30}"
	RootNamespace="EASEA"
	Keyword="WIN32Proj"
	TargetFrameworkVersion="196613"
	>
	<Platforms>
		<Platform
			Name="WIN32"
		/>
	</Platforms>
	<ToolFiles>
		<ToolFile
			RelativePath="\CUDA_RULE_DIRcommon\Cuda.rules"
		/>
	</ToolFiles>
	<Configurations>
		<Configuration
			Name="Release|WIN32"
			OutputDirectory="$(SolutionDir)"
			IntermediateDirectory="$(ConfigurationName)"
			ConfigurationType="1"
			CharacterSet="1"
			WholeProgramOptimization="1"
			>
			<Tool
				Name="VCPreBuildEventTool"
			/>
			<Tool
				Name="VCCustomBuildTool"
			/>
			<Tool
				Name="CUDA Build Rule"
				Include="\EZ_PATHlibEasea"
				Keep="false"
				Runtime="0"
			/>
			<Tool
				Name="VCXMLDataGeneratorTool"
			/>
			<Tool
				Name="VCWebServiceProxyGeneratorTool"
			/>
			<Tool
				Name="VCMIDLTool"
			/>
			<Tool
				Name="VCCLCompilerTool"
				Optimization="2"
				EnableIntrinsicFunctions="true"
				AdditionalIncludeDirectories="&quot;\EZ_PATHlibEasea&quot;"
				PreprocessorDefinitions="WIN32;NDEBUG;_CONSOLE"
				RuntimeLibrary="0"
				EnableFunctionLevelLinking="true"
				UsePrecompiledHeader="0"
				WarningLevel="3"
				DebugInformationFormat="3"
			/>
			<Tool
				Name="VCManagedResourceCompilerTool"
			/>
			<Tool
				Name="VCResourceCompilerTool"
			/>
			<Tool
				Name="VCPreLinkEventTool"
			/>
			<Tool
				Name="VCLinkerTool"
				AdditionalDependencies="$(CUDA_LIB_PATH)\cudart.lib"
				LinkIncremental="1"
				AdditionalLibraryDirectories="&quot;\EZ_PATHlibEasea&quot;"
				GenerateDebugInformation="true"
				SubSystem="1"
				OptimizeReferences="2"
				EnableCOMDATFolding="2"
				TargetMachine="1"
			/>
			<Tool
				Name="VCALinkTool"
			/>
			<Tool
				Name="VCManifestTool"
			/>
			<Tool
				Name="VCXDCMakeTool"
			/>
			<Tool
				Name="VCBscMakeTool"
			/>
			<Tool
				Name="VCFxCopTool"
			/>
			<Tool
				Name="VCAppVerifierTool"
			/>
			<Tool
				Name="VCPostBuildEventTool"
			/>
		</Configuration>
	</Configurations>
	<References>
	</References>
	<Files>
		<Filter
			Name="Source Files"
			Filter="cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx"
			UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}"
			>
			<File
				RelativePath=".\EASEA.cpp"
				>
			</File>
			<File
				RelativePath=".\EASEAIndividual.cu"
				>
			</File>
		</Filter>
		<Filter
			Name="Header Files"
			Filter="h;hpp;hxx;hm;inl;inc;xsd"
			UniqueIdentifier="{93995380-89BD-4b04-88EB-625FBE52EBFB}"
			>
			<File
				RelativePath=".\EASEAIndividual.hpp"
				>
			</File>
		</Filter>
		<Filter
			Name="Resource Files"
			Filter="rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav"
			UniqueIdentifier="{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}"
			>
		</Filter>
	</Files>
	<Globals>
	</Globals>
</VisualStudioProject>

\START_EO_PARAM_TPL#****************************************
#
#  EASEA.prm
#
#  Parameter file generated by CUDA.tpl AESAE v1.0
#
#***************************************
# --seed=0   # -S : Random number seed. It is possible to give a specific seed.

######    Evolution Engine    ######
--popSize=\POP_SIZE # -P : Population Size
--nbOffspring=\OFF_SIZE # -O : Nb of offspring (percentage or absolute)

######    Stopping Criterions    #####
--nbGen=\NB_GEN #Nb of generations
--timeLimit=\TIME_LIMIT # Time Limit: desactivate with (0) (in Seconds)

######    Evolution Engine / Replacement    ######
--elite=\ELITE_SIZE  # Nb of elite parents (absolute)
--eliteType=\ELITISM # Strong (1) or weak (0) elitism (set elite to 0 for none)
--survivingParents=\SURV_PAR_SIZE # Nb of surviving parents (percentage or absolute)
--survivingOffspring=\SURV_OFF_SIZE  # Nb of surviving offspring (percentage or absolute)
--selectionOperator=\SELECTOR_OPERATOR # Selector: Deterministic, Tournament, Random, Roulette
--selectionPressure=\SELECT_PRM
--reduceParentsOperator=\RED_PAR_OPERATOR
--reduceParentsPressure=\RED_PAR_PRM
--reduceOffspringOperator=\RED_OFF_OPERATOR
--reduceOffspringPressure=\RED_OFF_PRM
--reduceFinalOperator=\RED_FINAL_OPERATOR
--reduceFinalPressure=\RED_FINAL_PRM

#####   Stats Ouput     #####
--printStats=\PRINT_STATS #print Stats to screen
Frédéric Krüger's avatar
Frédéric Krüger committed
1017
--plotStats=\PLOT_STATS #plot Stats 
1018
--generateCSVFile=\GENERATE_CSV_FILE
Frédéric Krüger's avatar
Frédéric Krüger committed
1019
--generatePlotScript=\GENERATE_GNUPLOT_SCRIPT
1020
1021
--generateRScript=\GENERATE_R_SCRIPT

kruger's avatar
kruger committed
1022
1023
1024
1025
1026
1027
#### Population save    ####
--savePopulation=\SAVE_POPULATION #save population to EASEA.pop file
--startFromFile=\START_FROM_FILE #start optimisation from EASEA.pop file

#### Remote Island Model ####
--remoteIslandModel=\REMOTE_ISLAND_MODEL #To initialize communications with remote AESAE's
1028
1029
--ipFile=\IP_FILE
--migrationProbability=\MIGRATION_PROBABILITY #Probability to send an individual every generation
Frédéric Krüger's avatar
Frédéric Krüger committed
1030
--serverPort=\SERVER_PORT
1031
\TEMPLATE_END