Coupure prévue mardi 3 Août au matin pour maintenance du serveur. Nous faisons au mieux pour que celle-ci soit la plus brève possible.

EAtemplate.ez 2.77 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
/*_____________________________________________________________

Template for an EASEA evolutionary algorithm for easea v1.0.3
_______________________________________________________________*/

\User declarations : // This section is copied on top of the output file
\end

\User functions:
\end

12
13
14
15
\User CUDA:
//Transfert some variables to GPU here (cudaMalloc, MemCpy)
\end

16
17
18
\User classes :
GenomeClass { 
  // need to declare the genome here
19
  int i;
20
21
22
}
\end

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
\Before everything else function:
//cout<<"Before everything else function called "<<endl;
\end

\After everything else function:
//cout << "After everything else function called" << endl;
\end

\At the beginning of each generation function:
//cout << "At the beginning of each generation function called" << endl;
\end

\At the end of each generation function:
//cout << "At the end of each generation function called" << endl;
\end

\At each generation before reduce function:
//cout << "At each generation before replacement function called" << endl;
\end

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
\GenomeClass::display:
\end

\GenomeClass::initialiser : // "initializer" is also accepted
  // the genome to initialise is known as "Genome"
\end

\GenomeClass::crossover : 
  // must create "child" out of "parent1" and "parent2"
\end

\GenomeClass::mutator : // Must return the number of mutations
  // must mutate "Genome"
  return 0;
\end

\GenomeClass::evaluator : // Returns the score as a real value
  // uses Genome to evaluate the quality of the individual
  return 0.0;
\end

\User Makefile options: 
\end

\Default run parameters :        // Please let the parameters appear in this order
  Number of generations : 100    // NB_GEN
  Time limit: 0 			           // In seconds, 0 to deactivate
  Population size : 1024			   //POP_SIZE
  Offspring size : 1024 // or a xx%
  Mutation probability : 1       // MUT_PROB
  Crossover probability : 1      // XOVER_PROB
  Evaluator goal : maximize      // maximise
  Selection operator: Tournament 2.0
  Surviving parents: 100%        // Percentage or absolute  
  Surviving offspring: 100%      // Percentage or absolute  
  Reduce parents operator: Tournament 2
  Reduce offspring operator: Tournament 2
  Final reduce operator: Tournament 2

  Elitism: Strong			           // Weak or Strong
  Elite: 1
  Print stats: true				       // Default: 1
  Generate csv stats file:false			
  Generate gnuplot script:false
  Generate R script:false
  Plot stats:true				         // Default: 0

  Remote island model: false
  IP file: ip.txt 			         // List of IP:PORT of islands to send individuals to
  Migration probability: 0.33    // Probability of sending an individual per generation
93
  Server port : 2929
94
95
96
97
98

  Save population: false
  Start from file:false
\end