STD_MEM.tpl 17.4 KB
Newer Older
kruger's avatar
kruger committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
\TEMPLATE_START
/**
 This is program entry for STD template for EASEA

*/

\ANALYSE_PARAMETERS
#include <stdlib.h>
#include <iostream>
#include <time.h>
#include "COptionParser.h"
#include "CRandomGenerator.h"
#include "CEvolutionaryAlgorithm.h"
#include "global.h"
#include "EASEAIndividual.hpp"

using namespace std;

/** Global variables for the whole algorithm */
CIndividual** pPopulation = NULL;
CIndividual*  bBest = NULL;
float* pEZ_MUT_PROB = NULL;
float* pEZ_XOVER_PROB = NULL;
Frederic Kruger's avatar
Frederic Kruger committed
24 25
unsigned *EZ_NB_GEN;
unsigned *EZ_current_generation;
kruger's avatar
kruger committed
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
CEvolutionaryAlgorithm* EA;

int main(int argc, char** argv){


	parseArguments("EASEA.prm",argc,argv);

	ParametersImpl p;
	p.setDefaultParameters(argc,argv);
	CEvolutionaryAlgorithm* ea = p.newEvolutionaryAlgorithm();

	EA = ea;

	EASEAInit(argc,argv);

	CPopulation* pop = ea->getPopulation();

	ea->runEvolutionaryLoop();

	EASEAFinal(pop);

	delete pop;


	return 0;
}

\START_CUDA_GENOME_CU_TPL

#include <fstream>
#include <time.h>
#include <string>
#include <sstream>
#include "CRandomGenerator.h"
#include "CPopulation.h"
#include "COptionParser.h"
#include "CStoppingCriterion.h"
#include "CEvolutionaryAlgorithm.h"
#include "global.h"
#include "CIndividual.h"

using namespace std;

#include "EASEAIndividual.hpp"
bool INSTEAD_EVAL_STEP = false;

CRandomGenerator* globalRandomGenerator;
extern CEvolutionaryAlgorithm* EA;
#define STD_TPL

\INSERT_USER_DECLARATIONS
\ANALYSE_USER_CLASSES

\INSERT_USER_CLASSES

\INSERT_USER_FUNCTIONS

\INSERT_INITIALISATION_FUNCTION
\INSERT_FINALIZATION_FUNCTION

void evale_pop_chunk(CIndividual** population, int popSize){
  \INSTEAD_EVAL_FUNCTION
}

void EASEAInit(int argc, char** argv){
	\INSERT_INIT_FCT_CALL
}

void EASEAFinal(CPopulation* pop){
	\INSERT_FINALIZATION_FCT_CALL;
}

void AESAEBeginningGenerationFunction(CEvolutionaryAlgorithm* evolutionaryAlgorithm){
	\INSERT_BEGIN_GENERATION_FUNCTION
}

void AESAEEndGenerationFunction(CEvolutionaryAlgorithm* evolutionaryAlgorithm){
	\INSERT_END_GENERATION_FUNCTION
}

void AESAEGenerationFunctionBeforeReplacement(CEvolutionaryAlgorithm* evolutionaryAlgorithm){
	\INSERT_GENERATION_FUNCTION_BEFORE_REPLACEMENT
}


IndividualImpl::IndividualImpl() : CIndividual() {
  \GENOME_CTOR 
  \INSERT_EO_INITIALISER
  valid = false;
Frédéric Krüger's avatar
Frédéric Krüger committed
115
  isImmigrant = false;
kruger's avatar
kruger committed
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
}

CIndividual* IndividualImpl::clone(){
	return new IndividualImpl(*this);
}

IndividualImpl::~IndividualImpl(){
  \GENOME_DTOR
}


float IndividualImpl::evaluate(){
    valid = true;
    \INSERT_EVALUATOR
}

Frederic Kruger's avatar
Frederic Kruger committed
132 133 134 135
void IndividualImpl::boundChecking(){
	\INSERT_BOUND_CHECKING
}

kruger's avatar
kruger committed
136 137 138
string IndividualImpl::serialize(){
    ostringstream AESAE_Line(ios_base::app);
    \GENOME_SERIAL
139
    AESAE_Line << this->fitness;
kruger's avatar
kruger committed
140 141 142 143 144 145 146
    return AESAE_Line.str();
}

void IndividualImpl::deserialize(string Line){
    istringstream AESAE_Line(Line);
    string line;
    \GENOME_DESERIAL
147 148
    AESAE_Line >> this->fitness;
    this->valid=true;
Frédéric Krüger's avatar
Frédéric Krüger committed
149
    this->isImmigrant=false;
kruger's avatar
kruger committed
150 151 152 153 154 155 156 157 158 159 160 161 162
}

IndividualImpl::IndividualImpl(const IndividualImpl& genome){

  // ********************
  // Problem specific part
  \COPY_CTOR


  // ********************
  // Generic part
  this->valid = genome.valid;
  this->fitness = genome.fitness;
Frédéric Krüger's avatar
Frédéric Krüger committed
163
  this->isImmigrant = false;
kruger's avatar
kruger committed
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
}

CIndividual* IndividualImpl::crossover(CIndividual** ps){
	// ********************
	// Generic part
	IndividualImpl** tmp = (IndividualImpl**)ps;
	IndividualImpl parent1(*this);
	IndividualImpl parent2(*tmp[0]);
	IndividualImpl child(*this);

	//DEBUG_PRT("Xover");
	/*   cout << "p1 : " << parent1 << endl; */
	/*   cout << "p2 : " << parent2 << endl; */

	// ********************
	// Problem specific part
  	\INSERT_CROSSOVER


	child.valid = false;
	/*   cout << "child : " << child << endl; */
	return new IndividualImpl(child);
}


void IndividualImpl::printOn(std::ostream& os) const{
	\INSERT_DISPLAY
}

std::ostream& operator << (std::ostream& O, const IndividualImpl& B)
{
  // ********************
  // Problem specific part
  O << "\nIndividualImpl : "<< std::endl;
  O << "\t\t\t";
  B.printOn(O);

  if( B.valid ) O << "\t\t\tfitness : " << B.fitness;
  else O << "fitness is not yet computed" << std::endl;
  return O;
}


Frederic Kruger's avatar
Frederic Kruger committed
207
unsigned IndividualImpl::mutate( float pMutationPerGene ){
kruger's avatar
kruger committed
208 209 210 211 212 213 214 215 216 217 218 219
  this->valid=false;


  // ********************
  // Problem specific part
  \INSERT_MUTATOR
}

void IndividualImpl::optimiser(int currentIteration){
  \INSERT_OPTIMISER	
}

Frederic Kruger's avatar
Frederic Kruger committed
220
void PopulationImpl::optimisePopulation(CIndividual** population, unsigned populationSize){
kruger's avatar
kruger committed
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
	for(int iter=0; iter<params->optimiseIterations; iter++){
		for(int i=0; i<(signed)populationSize; i++){
			IndividualImpl* tmp = new IndividualImpl(*(IndividualImpl*)population[i]);
			tmp->optimiser(iter);
			tmp->evaluate();
			if(params->baldwinism){
				if((\MINIMAXI && tmp->fitness<population[i]->fitness) || (!\MINIMAXI && tmp->fitness>population[i]->fitness))
					population[i]->fitness = tmp->fitness;
				delete tmp;
			}
			else{
				if((\MINIMAXI && tmp->fitness<population[i]->fitness) || (!\MINIMAXI && tmp->fitness>population[i]->fitness)){
					delete population[i];
					population[i]=tmp;
				}
				else
					delete tmp;
			}
		}
	}	
}



void ParametersImpl::setDefaultParameters(int argc, char** argv){

	this->minimizing = \MINIMAXI;
	this->nbGen = setVariable("nbGen",(int)\NB_GEN);

	seed = setVariable("seed",(int)time(0));
	globalRandomGenerator = new CRandomGenerator(seed);
	this->randomGenerator = globalRandomGenerator;

	selectionOperator = getSelectionOperator(setVariable("selectionOperator","\SELECTOR_OPERATOR"), this->minimizing, globalRandomGenerator);
	replacementOperator = getSelectionOperator(setVariable("reduceFinalOperator","\RED_FINAL_OPERATOR"),this->minimizing, globalRandomGenerator);
	parentReductionOperator = getSelectionOperator(setVariable("reduceParentsOperator","\RED_PAR_OPERATOR"),this->minimizing, globalRandomGenerator);
	offspringReductionOperator = getSelectionOperator(setVariable("reduceOffspringOperator","\RED_OFF_OPERATOR"),this->minimizing, globalRandomGenerator);
	selectionPressure = setVariable("selectionPressure",(float)\SELECT_PRM);
	replacementPressure = setVariable("reduceFinalPressure",(float)\RED_FINAL_PRM);
	parentReductionPressure = setVariable("reduceParentsPressure",(float)\RED_PAR_PRM);
	offspringReductionPressure = setVariable("reduceOffspringPressure",(float)\RED_OFF_PRM);
	pCrossover = \XOVER_PROB;
	pMutation = \MUT_PROB;
	pMutationPerGene = 0.05;

	parentPopulationSize = setVariable("popSize",(int)\POP_SIZE);
	offspringPopulationSize = setVariable("nbOffspring",(int)\OFF_SIZE);


	parentReductionSize = setReductionSizes(parentPopulationSize, setVariable("survivingParents",(float)\SURV_PAR_SIZE));
	offspringReductionSize = setReductionSizes(offspringPopulationSize, setVariable("survivingOffspring",(float)\SURV_OFF_SIZE));

	this->elitSize = setVariable("elite",(int)\ELITE_SIZE);
	this->strongElitism = setVariable("eliteType",(int)\ELITISM);

	if((this->parentReductionSize + this->offspringReductionSize) < this->parentPopulationSize){
		printf("*WARNING* parentReductionSize + offspringReductionSize < parentPopulationSize\n");
		printf("*WARNING* change Sizes in .prm or .ez\n");
		printf("EXITING\n");
		exit(1);	
	} 
	if((this->parentPopulationSize-this->parentReductionSize)>this->parentPopulationSize-this->elitSize){
		printf("*WARNING* parentPopulationSize - parentReductionSize > parentPopulationSize - elitSize\n");
		printf("*WARNING* change Sizes in .prm or .ez\n");
		printf("EXITING\n");
		exit(1);	
	} 
	if(!this->strongElitism && ((this->offspringPopulationSize - this->offspringReductionSize)>this->offspringPopulationSize-this->elitSize)){
		printf("*WARNING* offspringPopulationSize - offspringReductionSize > offspringPopulationSize - elitSize\n");
		printf("*WARNING* change Sizes in .prm or .ez\n");
		printf("EXITING\n");
		exit(1);	
	} 
	

	/*
	 * The reduction is set to true if reductionSize (parent or offspring) is set to a size less than the
	 * populationSize. The reduction size is set to populationSize by default
	 */
	if(offspringReductionSize<offspringPopulationSize) offspringReduction = true;
	else offspringReduction = false;

	if(parentReductionSize<parentPopulationSize) parentReduction = true;
	else parentReduction = false;

	generationalCriterion = new CGenerationalCriterion(setVariable("nbGen",(int)\NB_GEN));
	controlCStopingCriterion = new CControlCStopingCriterion();
	timeCriterion = new CTimeCriterion(setVariable("timeLimit",\TIME_LIMIT));
	
	this->optimise=1;
	this->optimiseIterations = setVariable("optimiseIterations",(int)\NB_OPT_IT);
	this->baldwinism = setVariable("baldwinism",(int)\BALDWINISM);

	this->printStats = setVariable("printStats",\PRINT_STATS);
	this->generateCSVFile = setVariable("generateCSVFile",\GENERATE_CSV_FILE);
Frédéric Krüger's avatar
Frédéric Krüger committed
316
	this->generatePlotScript = setVariable("generatePlotScript",\GENERATE_GNUPLOT_SCRIPT);
kruger's avatar
kruger committed
317 318 319 320 321 322 323 324 325 326
	this->generateRScript = setVariable("generateRScript",\GENERATE_R_SCRIPT);
	this->plotStats = setVariable("plotStats",\PLOT_STATS);
	this->printInitialPopulation = setVariable("printInitialPopulation",0);
	this->printFinalPopulation = setVariable("printFinalPopulation",0);
        this->savePopulation = setVariable("savePopulation",\SAVE_POPULATION);
        this->startFromFile = setVariable("startFromFile",\START_FROM_FILE);

	this->outputFilename = (char*)"EASEA";
	this->plotOutputFilename = (char*)"EASEA.png";

Frédéric Krüger's avatar
Frédéric Krüger committed
327 328 329 330
    this->remoteIslandModel = setVariable("remoteIslandModel",\REMOTE_ISLAND_MODEL);
    this->ipFile = (char*)setVariable("ipFile","\IP_FILE").c_str();
    this->migrationProbability = setVariable("migrationProbability",(float)\MIGRATION_PROBABILITY);
    this->serverPort = setVariable("serverPort",\SERVER_PORT);
kruger's avatar
kruger committed
331 332 333 334 335 336
}

CEvolutionaryAlgorithm* ParametersImpl::newEvolutionaryAlgorithm(){

	pEZ_MUT_PROB = &pMutationPerGene;
	pEZ_XOVER_PROB = &pCrossover;
Frederic Kruger's avatar
Frederic Kruger committed
337
	EZ_NB_GEN = (unsigned*)setVariable("nbGen",\NB_GEN);
kruger's avatar
kruger committed
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
	EZ_current_generation=0;

	CEvolutionaryAlgorithm* ea = new EvolutionaryAlgorithmImpl(this);
	generationalCriterion->setCounterEa(ea->getCurrentGenerationPtr());
	ea->addStoppingCriterion(generationalCriterion);
	ea->addStoppingCriterion(controlCStopingCriterion);
	ea->addStoppingCriterion(timeCriterion);	

	EZ_NB_GEN=((CGenerationalCriterion*)ea->stoppingCriteria[0])->getGenerationalLimit();
	EZ_current_generation=&(ea->currentGeneration);

	 return ea;
}

void EvolutionaryAlgorithmImpl::initializeParentPopulation(){
        if(this->params->startFromFile){
          ifstream AESAE_File("EASEA.pop");
          string AESAE_Line;
          for( unsigned int i=0 ; i< this->params->parentPopulationSize ; i++){
                  getline(AESAE_File, AESAE_Line);
                  this->population->addIndividualParentPopulation(new IndividualImpl(),i);
                  ((IndividualImpl*)this->population->parents[i])->deserialize(AESAE_Line);
          }

        }
        else{
          for( unsigned int i=0 ; i< this->params->parentPopulationSize ; i++){
                  this->population->addIndividualParentPopulation(new IndividualImpl(),i);
          }
        }
        this->population->actualParentPopulationSize = this->params->parentPopulationSize;
}


EvolutionaryAlgorithmImpl::EvolutionaryAlgorithmImpl(Parameters* params) : CEvolutionaryAlgorithm(params){
	this->population = (CPopulation*)new PopulationImpl(this->params->parentPopulationSize,this->params->offspringPopulationSize, this->params->pCrossover,this->params->pMutation,this->params->pMutationPerGene,this->params->randomGenerator,this->params);
	;
}

EvolutionaryAlgorithmImpl::~EvolutionaryAlgorithmImpl(){

}

Frederic Kruger's avatar
Frederic Kruger committed
381
PopulationImpl::PopulationImpl(unsigned parentPopulationSize, unsigned offspringPopulationSize, float pCrossover, float pMutation, float pMutationPerGene, CRandomGenerator* rg, Parameters* params) : CPopulation(parentPopulationSize, offspringPopulationSize, pCrossover, pMutation, pMutationPerGene, rg, params){
kruger's avatar
kruger committed
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
        ;
}

PopulationImpl::~PopulationImpl(){
}

\START_CUDA_GENOME_H_TPL

#ifndef PROBLEM_DEP_H
#define PROBLEM_DEP_H

//#include "CRandomGenerator.h"
#include <stdlib.h>
#include <string>
#include <iostream>
#include <CIndividual.h>
#include <Parameters.h>

using namespace std;

class CRandomGenerator;
class CSelectionOperator;
class CGenerationalCriterion;
class CEvolutionaryAlgorithm;
class CPopulation;
class Parameters;

\INSERT_USER_CLASSES_DEFINITIONS

class IndividualImpl : public CIndividual {

public: // in EASEA the genome is public (for user functions,...)
	// Class members
  	\INSERT_GENOME

public:
	IndividualImpl();
	IndividualImpl(const IndividualImpl& indiv);
	virtual ~IndividualImpl();
	float evaluate();
Frederic Kruger's avatar
Frederic Kruger committed
422
	static unsigned getCrossoverArrity(){ return 2; }
kruger's avatar
kruger committed
423 424 425 426 427 428
	float getFitness(){ return this->fitness; }
	CIndividual* crossover(CIndividual** p2);
	void optimiser(int currentIteration);
	void printOn(std::ostream& O) const;
	CIndividual* clone();

Frederic Kruger's avatar
Frederic Kruger committed
429
	unsigned mutate(float pMutationPerGene);
Frederic Kruger's avatar
Frederic Kruger committed
430 431 432

	void boundChecking();

kruger's avatar
kruger committed
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
        string serialize();
        void deserialize(string AESAE_Line);

	friend std::ostream& operator << (std::ostream& O, const IndividualImpl& B) ;
	void initRandomGenerator(CRandomGenerator* rg){ IndividualImpl::rg = rg;}

};


class ParametersImpl : public Parameters {
public:
	void setDefaultParameters(int argc, char** argv);
	CEvolutionaryAlgorithm* newEvolutionaryAlgorithm();
};

/**
 * @TODO ces functions devraient s'appeler weierstrassInit, weierstrassFinal etc... (en gros EASEAFinal dans le tpl).
 *
 */

void EASEAInit(int argc, char** argv);
void EASEAFinal(CPopulation* pop);
void EASEABeginningGenerationFunction(CEvolutionaryAlgorithm* evolutionaryAlgorithm);
void EASEAEndGenerationFunction(CEvolutionaryAlgorithm* evolutionaryAlgorithm);
void EASEAGenerationFunctionBeforeReplacement(CEvolutionaryAlgorithm* evolutionaryAlgorithm);


class EvolutionaryAlgorithmImpl: public CEvolutionaryAlgorithm {
public:
	EvolutionaryAlgorithmImpl(Parameters* params);
	virtual ~EvolutionaryAlgorithmImpl();
	void initializeParentPopulation();
};

class PopulationImpl: public CPopulation {
public:
Frederic Kruger's avatar
Frederic Kruger committed
469
        PopulationImpl(unsigned parentPopulationSize, unsigned offspringPopulationSize, float pCrossover, float pMutation, float pMutationPerGene, CRandomGenerator* rg, Parameters* params);
kruger's avatar
kruger committed
470
        virtual ~PopulationImpl();
Frederic Kruger's avatar
Frederic Kruger committed
471
	void optimisePopulation(CIndividual** population, unsigned populationSize);
kruger's avatar
kruger committed
472 473 474 475 476 477 478 479
};

#endif /* PROBLEM_DEP_H */

\START_CUDA_MAKEFILE_TPL

UNAME := $(shell uname)

Frédéric Krüger's avatar
Frédéric Krüger committed
480 481 482 483 484 485 486 487
ifeq($(shell uname -o 2>/dev/null),Msys)
	OS := MINGW
endif

ifneq ("$(OS)","")
	EZ_PATH=../../
endif

kruger's avatar
kruger committed
488 489
EASEALIB_PATH=$(EZ_PATH)libeasea/

490
CXXFLAGS =  -fopenmp -O2 -g -Wall -fmessage-length=0 -I$(EASEALIB_PATH)include -I$(EZ_PATH)boost
491

kruger's avatar
kruger committed
492 493
OBJS = EASEA.o EASEAIndividual.o 

494
LIBS = -lpthread -fopenmp
Frédéric Krüger's avatar
Frédéric Krüger committed
495 496 497 498 499 500
ifneq ("$(OS)","")
	LIBS += -lw2_32 -lwinmm -L"C:\MinGW\lib"
endif

#USER MAKEFILE OPTIONS :
\INSERT_MAKEFILE_OPTION#END OF USER MAKEFILE OPTIONS
kruger's avatar
kruger committed
501 502 503 504

TARGET =	EASEA

$(TARGET):	$(OBJS)
Frédéric Krüger's avatar
Frédéric Krüger committed
505
	$(CXX) -o $(TARGET) $(OBJS) $(LDFLAGS) -g $(EASEALIB_PATH)libeasea.a $(EZ_PATH)boost/program_options.a $(LIBS)
kruger's avatar
kruger committed
506 507 508 509 510 511 512

	
#%.o:%.cpp
#	$(CXX) -c $(CXXFLAGS) $^

all:	$(TARGET)
clean:
Frédéric Krüger's avatar
Frédéric Krüger committed
513 514 515
ifneq ("^$(OS)","")
	-del $(OBJS) $(TARGET).exe
else
kruger's avatar
kruger committed
516
	rm -f $(OBJS) $(TARGET)
Frédéric Krüger's avatar
Frédéric Krüger committed
517
endif
kruger's avatar
kruger committed
518
easeaclean:
Frédéric Krüger's avatar
Frédéric Krüger committed
519 520 521
ifneq ("$(OS)","")
	-del $(TARGET).exe *.o *.cpp *.hpp EASEA.png EASEA.dat EASEA.prm EASEA.mak Makefile EASEA.vcproj EASEA.csv EASEA.r EASEA.plot EASEA.pop
else	
kruger's avatar
kruger committed
522
	rm -f $(TARGET) *.o *.cpp *.hpp EASEA.png EASEA.dat EASEA.prm EASEA.mak Makefile EASEA.vcproj EASEA.csv EASEA.r EASEA.plot EASEA.pop
Frédéric Krüger's avatar
Frédéric Krüger committed
523
endif
kruger's avatar
kruger committed
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
	
\START_EO_PARAM_TPL#****************************************
#                                         
#  EASEA.prm
#                                         
#  Parameter file generated by STD.tpl AESAE v1.0
#                                         
#***************************************
# --seed=0   # -S : Random number seed. It is possible to give a specific seed.

######    Evolution Engine    ######
--popSize=\POP_SIZE # -P : Population Size
--nbOffspring=\OFF_SIZE # -O : Nb of offspring (percentage or absolute)

######	  Stopping Criterions    #####
--nbGen=\NB_GEN #Nb of generations
--timeLimit=\TIME_LIMIT # Time Limit: desactivate with (0) (in Seconds)

######    Evolution Engine / Replacement    ######
--elite=\ELITE_SIZE  # Nb of elite parents (absolute)
--eliteType=\ELITISM # Strong (1) or weak (0) elitism (set elite to 0 for none)
--survivingParents=\SURV_PAR_SIZE # Nb of surviving parents (percentage or absolute)
--survivingOffspring=\SURV_OFF_SIZE  # Nb of surviving offspring (percentage or absolute)
--selectionOperator=\SELECTOR_OPERATOR # Selector: Deterministic, Tournament, Random, Roulette 
--selectionPressure=\SELECT_PRM
--reduceParentsOperator=\RED_PAR_OPERATOR 
--reduceParentsPressure=\RED_PAR_PRM
--reduceOffspringOperator=\RED_OFF_OPERATOR 
--reduceOffspringPressure=\RED_OFF_PRM
--reduceFinalOperator=\RED_FINAL_OPERATOR
--reduceFinalPressure=\RED_FINAL_PRM

######    Local Optimisation    ######
--optimiseIterations=\NB_OPT_IT
--baldwinism=\BALDWINISM # True (1) or False (0) baldwinism : keep optimised genome

#####	Stats Ouput 	#####
--printStats=\PRINT_STATS #print Stats to screen
Frédéric Krüger's avatar
Frédéric Krüger committed
562
--plotStats=\PLOT_STATS #plot Stats
kruger's avatar
kruger committed
563 564 565
--printInitialPopulation=0 #Print initial population
--printFinalPopulation=0 #Print final population
--generateCSVFile=\GENERATE_CSV_FILE
Frédéric Krüger's avatar
Frédéric Krüger committed
566
--generatePlotScript=\GENERATE_GNUPLOT_SCRIPT
kruger's avatar
kruger committed
567 568 569 570 571 572 573
--generateRScript=\GENERATE_R_SCRIPT

#### Population save    ####
--savePopulation=\SAVE_POPULATION #save population to EASEA.pop file
--startFromFile=\START_FROM_FILE #start optimisation from EASEA.pop file

#### Remote Island Model ####
Frederic Kruger's avatar
Frederic Kruger committed
574
--remoteIslandModel=\REMOTE_ISLAND_MODEL #To initialize communications with remote AESAE's
kruger's avatar
kruger committed
575
--ipFile=\IP_FILE
576
--migrationProbability=\MIGRATION_PROBABILITY #Probability to send an individual every generation
Frédéric Krüger's avatar
Frédéric Krüger committed
577
--serverPort=\SERVER_PORT
kruger's avatar
kruger committed
578
\TEMPLATE_END