Coupure prévue mardi 3 Août au matin pour maintenance du serveur. Nous faisons au mieux pour que celle-ci soit la plus brève possible.

CUDA.tpl 26.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
\TEMPLATE_START
#ifdef WIN32
#define _CRT_SECURE_NO_WARNINGS
#pragma comment(lib, "libEasea.lib")
#pragma comment(lib, "Winmm.lib")
#endif
/**
 This is program entry for STD template for EASEA

*/

\ANALYSE_PARAMETERS
#include <stdlib.h>
#include <iostream>
#include <time.h>
#include "COptionParser.h"
#include "CRandomGenerator.h"
#include "CEvolutionaryAlgorithm.h"
#include "global.h"
#include "EASEAIndividual.hpp"

using namespace std;

/** Global variables for the whole algorithm */
CIndividual** pPopulation = NULL;
CIndividual* bBest = NULL;
float* pEZ_MUT_PROB = NULL;
float* pEZ_XOVER_PROB = NULL;
Frederic Kruger's avatar
Frederic Kruger committed
29
30
unsigned *EZ_NB_GEN;
unsigned *EZ_current_generation;
kruger's avatar
kruger committed
31
CEvolutionaryAlgorithm* EA;
32
33
34
35
36
37
38
39
40
41

int main(int argc, char** argv){


	parseArguments("EASEA.prm",argc,argv);

	ParametersImpl p;
	p.setDefaultParameters(argc,argv);
	CEvolutionaryAlgorithm* ea = p.newEvolutionaryAlgorithm();

kruger's avatar
kruger committed
42
43
	EA = ea;

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
	EASEAInit(argc,argv);

	CPopulation* pop = ea->getPopulation();

	ea->runEvolutionaryLoop();

	EASEAFinal(pop);

	delete pop;

#ifdef WIN32
	system("pause");
#endif
	return 0;
}

\START_CUDA_GENOME_CU_TPL
#ifdef _WIN32
#define _CRT_SECURE_NO_WARNINGS
#define WIN32
#endif

#include <fstream>
#ifndef WIN32
#include <sys/time.h>
#else
#include <time.h>
#endif
kruger's avatar
kruger committed
72
73
#include <string>
#include <sstream>
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#include "CRandomGenerator.h"
#include "CPopulation.h"
#include "COptionParser.h"
#include "CStoppingCriterion.h"
#include "CEvolutionaryAlgorithm.h"
#include "global.h"
#include "CIndividual.h"
#include "CCuda.h"
#include <vector_types.h>


using namespace std;

#include "EASEAIndividual.hpp"
bool INSTEAD_EVAL_STEP = false;

CRandomGenerator* globalRandomGenerator;
kruger's avatar
kruger committed
91
extern CEvolutionaryAlgorithm *EA;
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

#define CUDA_TPL

struct gpuArg* gpuArgs;


struct my_struct_gpu* gpu_infos;
float* fitnessTemp;  
bool freeGPU = false;
bool first_generation = true;
int num_gpus = 0;       // number of CUDA GPUs

PopulationImpl* Pop = NULL;

\INSERT_USER_DECLARATIONS
\ANALYSE_USER_CLASSES

\INSERT_USER_CLASSES

\INSERT_USER_FUNCTIONS

Frederic Kruger's avatar
Frederic Kruger committed
113
void cudaPreliminaryProcess(unsigned PopulationSize){
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
       int capacite_max = 0;

       //Recuperation of each device information's.
       for( int index = 0; index < num_gpus; index++){
             cudaDeviceProp deviceProp;
             cudaGetDeviceProperties(&deviceProp, index);

             gpu_infos[index].num_MP =  deviceProp.multiProcessorCount*2; //Two block on each MP
	     gpu_infos[index].num_thread_max = deviceProp.maxThreadsPerBlock*0.5; //We are going to use 50% of the real maximun thread per block, we want to be sure to have enough memory for all of them. 
             gpu_infos[index].num_Warp = deviceProp.warpSize;
             capacite_max += gpu_infos[index].num_MP * gpu_infos[index].num_thread_max;
       }
      
       int count = 0;

       //We can have different cards that's why we are going to put more or less individuals on each of them according to their respective capacity.
       for( int index = 0; index < num_gpus; index++){
           gpu_infos[index].indiv_start = count;
           //On the first cards we are going to place a maximun of individuals.
           if(index != (num_gpus - 1)) 
	    gpu_infos[index].sh_pop_size = ceil((float)PopulationSize * (((float)gpu_infos[index].num_MP*(float)gpu_infos[index].num_thread_max) / (float)capacite_max) );
           //On the last card we are going to place the remaining individuals.  
          else 
            gpu_infos[index].sh_pop_size = PopulationSize - count;
                    
          count += gpu_infos[index].sh_pop_size;
	  
          /*
	  * The number of thread will be a multiple of the number of Warp less than or equal at the maximun number of thread per block.
	  * The number of block will be a multiple of the double of MP.
	  */
          if( !repartition(&gpu_infos[index]))
                 exit( -1 );
           std::cout << "Device number : " << index << "  Number of block : " << gpu_infos[index].dimGrid << std::endl;
           std::cout << "Device number : " << index << "  Number of thread : " << gpu_infos[index].dimBlock << std::endl;
       }
}

Frederic Kruger's avatar
Frederic Kruger committed
152
__device__ __host__ inline IndividualImpl* INDIVIDUAL_ACCESS(void* buffer,unsigned id){
153
154
155
  return (IndividualImpl*)buffer+id;
}

Frederic Kruger's avatar
Frederic Kruger committed
156
__device__ float cudaEvaluate(void* devBuffer, unsigned id, struct gpuOptions initOpts){
157
158
159
160
  \INSERT_CUDA_EVALUATOR
}
  

Frederic Kruger's avatar
Frederic Kruger committed
161
__global__ void cudaEvaluatePopulation(void* d_population, unsigned popSize, float* d_fitnesses, struct gpuOptions initOpts){
162

Frederic Kruger's avatar
Frederic Kruger committed
163
        unsigned id = (blockDim.x*blockIdx.x)+threadIdx.x;  // id of the individual computed by this thread
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

  	// escaping for the last block
        if( id >= popSize ) return;
  
        //void* indiv = ((char*)d_population)+id*(\GENOME_SIZE+sizeof(IndividualImpl*)); // compute the offset of the current individual
        d_fitnesses[id] = cudaEvaluate(d_population,id,initOpts);
}



void* gpuThreadMain(void* arg){

  cudaError_t lastError;
  struct gpuArg* localArg = (struct gpuArg*)arg;
  cudaSetDevice(localArg->threadId);
  int nbr_cudaPreliminaryProcess = 2;

  // Wait for population to evaluate
   while(1){
	    sem_wait(&localArg->sem_in);
	    if( freeGPU ) {
                        cudaFree(localArg->d_fitness);
	                cudaFree(localArg->d_population);
     			 break;
	    }
	    if(nbr_cudaPreliminaryProcess > 0) {
              	 lastError = cudaMalloc(&localArg->d_population,gpu_infos[localArg->threadId].sh_pop_size*(sizeof(IndividualImpl)));
	         lastError = cudaMalloc(((void**)&localArg->d_fitness),gpu_infos[localArg->threadId].sh_pop_size*sizeof(float));
	         nbr_cudaPreliminaryProcess--;
            }		    
            lastError = cudaMemcpy(localArg->d_population,(IndividualImpl*)(Pop->cuda->cudaBuffer)+gpu_infos[localArg->threadId].indiv_start,(sizeof(IndividualImpl)*gpu_infos[localArg->threadId].sh_pop_size),cudaMemcpyHostToDevice);
				      
	    cudaEvaluatePopulation<<< gpu_infos[localArg->threadId].dimGrid, gpu_infos[localArg->threadId].dimBlock>>>(localArg->d_population,gpu_infos[localArg->threadId].sh_pop_size,localArg->d_fitness,Pop->cuda->initOpts);
	    lastError = cudaThreadSynchronize();
		    
	    lastError = cudaMemcpy(fitnessTemp + gpu_infos[localArg->threadId].indiv_start, localArg->d_fitness, gpu_infos[localArg->threadId].sh_pop_size*sizeof(float), cudaMemcpyDeviceToHost);
	    
	    sem_post(&localArg->sem_out);
   }
  sem_post(&localArg->sem_out);
  fflush(stdout);
  return NULL;
}
				
void wake_up_gpu_thread(){
	for( int i=0 ; i<num_gpus ; i++ ){
		sem_post(&(gpuArgs[i].sem_in));
		sem_wait(&gpuArgs[i].sem_out);
  	}
}
				
void InitialiseGPUs(){
	//MultiGPU part on one CPU
	gpuArgs = (struct gpuArg*)malloc(sizeof(struct gpuArg)*num_gpus);
	pthread_t* t = (pthread_t*)malloc(sizeof(pthread_t)*num_gpus);
	
	//here we want to create on thread per GPU
	for( int i=0 ; i<num_gpus ; i++ ){
	  	gpuArgs[i].threadId = i;
	  	sem_init(&gpuArgs[i].sem_in,0,0);
	  	sem_init(&gpuArgs[i].sem_out,0,0);
	  	if( pthread_create(t+i,NULL,gpuThreadMain,gpuArgs+i) )
		  	perror("pthread_create : ");
	}
}

\INSERT_INITIALISATION_FUNCTION
\INSERT_FINALIZATION_FUNCTION

\INSERT_BOUND_CHECKING

void evale_pop_chunk(CIndividual** population, int popSize){
  \INSTEAD_EVAL_FUNCTION
}

void EASEAInit(int argc, char** argv){
        cudaGetDeviceCount(&num_gpus);
        gpu_infos = (struct my_struct_gpu*)malloc(sizeof(struct my_struct_gpu)*num_gpus);
	InitialiseGPUs();
	\INSERT_INIT_FCT_CALL
}

void EASEAFinal(CPopulation* pop){
	freeGPU=true;
	wake_up_gpu_thread();
        free(gpuArgs);
	
        free(gpu_infos);
	\INSERT_FINALIZATION_FCT_CALL;
}

void AESAEBeginningGenerationFunction(CEvolutionaryAlgorithm* evolutionaryAlgorithm){
	\INSERT_BEGIN_GENERATION_FUNCTION
}

void AESAEEndGenerationFunction(CEvolutionaryAlgorithm* evolutionaryAlgorithm){
	\INSERT_END_GENERATION_FUNCTION
}

void AESAEGenerationFunctionBeforeReplacement(CEvolutionaryAlgorithm* evolutionaryAlgorithm){
        \INSERT_GENERATION_FUNCTION_BEFORE_REPLACEMENT
}


IndividualImpl::IndividualImpl() : CIndividual() {
  \GENOME_CTOR 
  \INSERT_EO_INITIALISER
  valid = false;
}

CIndividual* IndividualImpl::clone(){
	return new IndividualImpl(*this);
}

IndividualImpl::~IndividualImpl(){
  \GENOME_DTOR
}


float IndividualImpl::evaluate(){
  if(valid)
    return fitness;
  else{
    valid = true;
    \INSERT_EVALUATOR
  }
}

kruger's avatar
kruger committed
292
293
294
string IndividualImpl::serialize(){
    ostringstream AESAE_Line(ios_base::app);
    \GENOME_SERIAL
295
    AESAE_Line << this->fitness;
kruger's avatar
kruger committed
296
297
298
299
300
301
302
    return AESAE_Line.str();
}

void IndividualImpl::deserialize(string Line){
    istringstream AESAE_Line(Line);
    string line;
    \GENOME_DESERIAL
303
304
    AESAE_Line >> this->fitness;
    this->valid=true;
kruger's avatar
kruger committed
305
306
}

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
IndividualImpl::IndividualImpl(const IndividualImpl& genome){

  // ********************
  // Problem specific part
  \COPY_CTOR


  // ********************
  // Generic part
  this->valid = genome.valid;
  this->fitness = genome.fitness;
}


CIndividual* IndividualImpl::crossover(CIndividual** ps){
	// ********************
	// Generic part
	IndividualImpl** tmp = (IndividualImpl**)ps;
	IndividualImpl parent1(*this);
	IndividualImpl parent2(*tmp[0]);
	IndividualImpl child(*this);

	//DEBUG_PRT("Xover");
	/*   cout << "p1 : " << parent1 << endl; */
	/*   cout << "p2 : " << parent2 << endl; */

	// ********************
	// Problem specific part
  	\INSERT_CROSSOVER


	child.valid = false;
	/*   cout << "child : " << child << endl; */
	return new IndividualImpl(child);
}


void IndividualImpl::printOn(std::ostream& os) const{
	\INSERT_DISPLAY
}

std::ostream& operator << (std::ostream& O, const IndividualImpl& B)
{
  // ********************
  // Problem specific part
  O << "\nIndividualImpl : "<< std::endl;
  O << "\t\t\t";
  B.printOn(O);

  if( B.valid ) O << "\t\t\tfitness : " << B.fitness;
  else O << "fitness is not yet computed" << std::endl;
  return O;
}


Frederic Kruger's avatar
Frederic Kruger committed
362
unsigned IndividualImpl::mutate( float pMutationPerGene ){
363
364
365
366
367
368
369
370
371
372
  this->valid=false;


  // ********************
  // Problem specific part
  \INSERT_MUTATOR
}


void PopulationImpl::evaluateParentPopulation(){
Frederic Kruger's avatar
Frederic Kruger committed
373
        unsigned actualPopulationSize = this->actualParentPopulationSize;
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
	fitnessTemp = new float[actualPopulationSize];
	int index;
        cudaPreliminaryProcess(actualPopulationSize);
        
	       	
 	wake_up_gpu_thread(); 

 	
	for( index=(actualPopulationSize-1); index>=0; index--){
		this->parents[index]->fitness = fitnessTemp[index];
		this->parents[index]->valid = true;
	}  

        delete[](fitnessTemp);

}

void PopulationImpl::evaluateOffspringPopulation(){
Frederic Kruger's avatar
Frederic Kruger committed
392
	unsigned actualPopulationSize = this->actualOffspringPopulationSize;
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
	fitnessTemp = new float[actualPopulationSize];
	int index;
	if(first_generation) cudaPreliminaryProcess(actualPopulationSize);

        for( index=(actualPopulationSize-1); index>=0; index--)
	    ((IndividualImpl*)this->offsprings[index])->copyToCudaBuffer(this->cuda->cudaBuffer,index);

        wake_up_gpu_thread(); 

	for( index=(actualPopulationSize-1); index>=0; index--){
		this->offsprings[index]->fitness = fitnessTemp[index];
		this->offsprings[index]->valid = true;
	}	  
 
        first_generation = false;
        delete[](fitnessTemp);
}





kruger's avatar
kruger committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
void ParametersImpl::setDefaultParameters(int argc, char** argv){
        this->minimizing = \MINIMAXI;
        this->nbGen = setVariable("nbGen",(int)\NB_GEN);

        seed = setVariable("seed",(int)time(0));
        globalRandomGenerator = new CRandomGenerator(seed);
        this->randomGenerator = globalRandomGenerator;

        selectionOperator = getSelectionOperator(setVariable("selectionOperator","\SELECTOR_OPERATOR"), this->minimizing, globalRandomGenerator);
        replacementOperator = getSelectionOperator(setVariable("reduceFinalOperator","\RED_FINAL_OPERATOR"),this->minimizing, globalRandomGenerator);
        parentReductionOperator = getSelectionOperator(setVariable("reduceParentsOperator","\RED_PAR_OPERATOR"),this->minimizing, globalRandomGenerator);
        offspringReductionOperator = getSelectionOperator(setVariable("reduceOffspringOperator","\RED_OFF_OPERATOR"),this->minimizing, globalRandomGenerator);
        selectionPressure = setVariable("selectionPressure",(float)\SELECT_PRM);
        replacementPressure = setVariable("reduceFinalPressure",(float)\RED_FINAL_PRM);
        parentReductionPressure = setVariable("reduceParentsPressure",(float)\RED_PAR_PRM);
        offspringReductionPressure = setVariable("reduceOffspringPressure",(float)\RED_OFF_PRM);
        pCrossover = \XOVER_PROB;
        pMutation = \MUT_PROB;
        pMutationPerGene = 0.05;

        parentPopulationSize = setVariable("popSize",(int)\POP_SIZE);
        offspringPopulationSize = setVariable("nbOffspring",(int)\OFF_SIZE);


        parentReductionSize = setReductionSizes(parentPopulationSize, setVariable("survivingParents",(float)\SURV_PAR_SIZE));
        offspringReductionSize = setReductionSizes(offspringPopulationSize, setVariable("survivingOffspring",(float)\SURV_OFF_SIZE));

        this->elitSize = setVariable("elite",(int)\ELITE_SIZE);
        this->strongElitism = setVariable("eliteType",(int)\ELITISM);

        if((this->parentReductionSize + this->offspringReductionSize) < this->parentPopulationSize){
                printf("*WARNING* parentReductionSize + offspringReductionSize < parentPopulationSize\n");
                printf("*WARNING* change Sizes in .prm or .ez\n");
                printf("EXITING\n");
                exit(1);
        }
        if((this->parentPopulationSize - this->parentReductionSize)>this->parentPopulationSize-this->elitSize){
                printf("*WARNING* parentPopulationSize - parentReductionSize > parentPopulationSize - elitSize\n");
                printf("*WARNING* change Sizes in .prm or .ez\n");
                printf("EXITING\n");
                exit(1);
        }
        if(!this->strongElitism && ((this->offspringPopulationSize - this->offspringReductionSize)>this->offspringPopulationSize-this->elitSize)){
                printf("*WARNING* offspringPopulationSize - offspringReductionSize > offspringPopulationSize - elitSize\n");
                printf("*WARNING* change Sizes in .prm or .ez\n");
                printf("EXITING\n");
                exit(1);
        }
        if(offspringReductionSize<offspringPopulationSize) offspringReduction = true;
        else offspringReduction = false;

        if(parentReductionSize<parentPopulationSize) parentReduction = true;
        else parentReduction = false;

        generationalCriterion = new CGenerationalCriterion(setVariable("nbGen",(int)\NB_GEN));
        controlCStopingCriterion = new CControlCStopingCriterion();
        timeCriterion = new CTimeCriterion(setVariable("timeLimit",\TIME_LIMIT));

	this->optimise=0;

        this->printStats = setVariable("printStats",\PRINT_STATS);
        this->generateCSVFile = setVariable("generateCSVFile",\GENERATE_CSV_FILE);
        this->generateGnuplotScript = setVariable("generateGnuplotScript",\GENERATE_GNUPLOT_SCRIPT);
        this->generateRScript = setVariable("generateRScript",\GENERATE_R_SCRIPT);
        this->plotStats = setVariable("plotStats",\PLOT_STATS);
	this->printInitialPopulation = setVariable("printInitialPopulation",0);
	this->printFinalPopulation = setVariable("printFinalPopulation",0);
	this->savePopulation = setVariable("savePopulation",\SAVE_POPULATION);
	this->startFromFile = setVariable("startFromFile",\START_FROM_FILE);

        this->outputFilename = (char*)"EASEA";
        this->plotOutputFilename = (char*)"EASEA.png";

	this->remoteIslandModel = setVariable("remoteIslandModel",\REMOTE_ISLAND_MODEL);
        this->ipFile = (char*)setVariable("ipFile","\IP_FILE").c_str();
490
        this->migrationProbability = setVariable("migrationProbability",(float)\MIGRATION_PROBABILITY);
kruger's avatar
kruger committed
491

492
493
494
495
496
497
}

CEvolutionaryAlgorithm* ParametersImpl::newEvolutionaryAlgorithm(){

	pEZ_MUT_PROB = &pMutationPerGene;
	pEZ_XOVER_PROB = &pCrossover;
Frederic Kruger's avatar
Frederic Kruger committed
498
	EZ_NB_GEN = (unsigned*)setVariable("nbGen",\NB_GEN);
499
500
501
502
503
504
505
506
507
508
509
510
511
512
	EZ_current_generation=0;

	CEvolutionaryAlgorithm* ea = new EvolutionaryAlgorithmImpl(this);
	generationalCriterion->setCounterEa(ea->getCurrentGenerationPtr());
	 ea->addStoppingCriterion(generationalCriterion);
	ea->addStoppingCriterion(controlCStopingCriterion);
	ea->addStoppingCriterion(timeCriterion);

	  EZ_NB_GEN=((CGenerationalCriterion*)ea->stoppingCriteria[0])->getGenerationalLimit();
	  EZ_current_generation=&(ea->currentGeneration);

	 return ea;
}

Frederic Kruger's avatar
Frederic Kruger committed
513
inline void IndividualImpl::copyToCudaBuffer(void* buffer, unsigned id){
514
515
516
517
518
519
520
521
522
  
 memcpy(((IndividualImpl*)buffer)+id,this,sizeof(IndividualImpl)); 
  
}

void EvolutionaryAlgorithmImpl::initializeParentPopulation(){
    //DEBUG_PRT("Creation of %lu/%lu parents (other could have been loaded from input file)",this->params->parentPopulationSize-this->params->actualParentPopulationSize,this->params->parentPopulationSize);
    int index,Size = this->params->parentPopulationSize;
    
kruger's avatar
kruger committed
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
    if(this->params->startFromFile){
          ifstream AESAE_File("EASEA.pop");
          string AESAE_Line;
          for( index=(Size-1); index>=0; index--) {
             getline(AESAE_File, AESAE_Line);
            this->population->addIndividualParentPopulation(new IndividualImpl(),index);
            ((IndividualImpl*)this->population->parents[index])->deserialize(AESAE_Line);
            ((IndividualImpl*)this->population->parents[index])->copyToCudaBuffer(((PopulationImpl*)this->population)->cuda->cudaBuffer,index);
         }

        }
        else{
                for( index=(Size-1); index>=0; index--) {
                         this->population->addIndividualParentPopulation(new IndividualImpl(),index);
                        ((IndividualImpl*)this->population->parents[index])->copyToCudaBuffer(((PopulationImpl*)this->population)->cuda->cudaBuffer,index);
                }
    }
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
    
    this->population->actualOffspringPopulationSize = 0;
    this->population->actualParentPopulationSize = Size;
}


EvolutionaryAlgorithmImpl::EvolutionaryAlgorithmImpl(Parameters* params) : CEvolutionaryAlgorithm(params){
	this->population = (CPopulation*)new PopulationImpl(this->params->parentPopulationSize,this->params->offspringPopulationSize, this->params->pCrossover,this->params->pMutation,this->params->pMutationPerGene,this->params->randomGenerator,this->params);
	((PopulationImpl*)this->population)->cuda = new CCuda(params->parentPopulationSize, params->offspringPopulationSize, sizeof(IndividualImpl));
	Pop = ((PopulationImpl*)this->population);
	;
}

EvolutionaryAlgorithmImpl::~EvolutionaryAlgorithmImpl(){

}

Frederic Kruger's avatar
Frederic Kruger committed
557
PopulationImpl::PopulationImpl(unsigned parentPopulationSize, unsigned offspringPopulationSize, float pCrossover, float pMutation, float pMutationPerGene, CRandomGenerator* rg, Parameters* params) : CPopulation(parentPopulationSize, offspringPopulationSize, pCrossover, pMutation, pMutationPerGene, rg, params){
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
	;
}

PopulationImpl::~PopulationImpl(){
}


\START_CUDA_GENOME_H_TPL

#ifndef PROBLEM_DEP_H
#define PROBLEM_DEP_H

//#include "CRandomGenerator.h"
#include <stdlib.h>
#include <iostream>
#include <CIndividual.h>
#include <Parameters.h>
#include <CCuda.h>
kruger's avatar
kruger committed
576
577
578
579
#include <string>

using namespace std;

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
class CRandomGenerator;
class CSelectionOperator;
class CGenerationalCriterion;
class CEvolutionaryAlgorithm;
class CPopulation;
class Parameters;
class CCuda;


\INSERT_USER_CLASSES_DEFINITIONS

class IndividualImpl : public CIndividual {

public: // in EASEA the genome is public (for user functions,...)
	// Class members
  	\INSERT_GENOME


public:
	IndividualImpl();
	IndividualImpl(const IndividualImpl& indiv);
	virtual ~IndividualImpl();
	float evaluate();
Frederic Kruger's avatar
Frederic Kruger committed
603
	static unsigned getCrossoverArrity(){ return 2; }
604
605
606
607
608
	float getFitness(){ return this->fitness; }
	CIndividual* crossover(CIndividual** p2);
	void printOn(std::ostream& O) const;
	CIndividual* clone();

Frederic Kruger's avatar
Frederic Kruger committed
609
	unsigned mutate(float pMutationPerGene);
kruger's avatar
kruger committed
610
611
	string serialize();
	void deserialize(string AESAE_Line);
Frederic Kruger's avatar
Frederic Kruger committed
612
	void copyToCudaBuffer(void* buffer, unsigned id);
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

	friend std::ostream& operator << (std::ostream& O, const IndividualImpl& B) ;
	void initRandomGenerator(CRandomGenerator* rg){ IndividualImpl::rg = rg;}
};


class ParametersImpl : public Parameters {
public:
	void setDefaultParameters(int argc, char** argv);
	CEvolutionaryAlgorithm* newEvolutionaryAlgorithm();
};

/**
 * @TODO ces functions devraient s'appeler weierstrassInit, weierstrassFinal etc... (en gros EASEAFinal dans le tpl).
 *
 */

void EASEAInit(int argc, char** argv);
void EASEAFinal(CPopulation* pop);
void EASEABeginningGenerationFunction(CEvolutionaryAlgorithm* evolutionaryAlgorithm);
void EASEAEndGenerationFunction(CEvolutionaryAlgorithm* evolutionaryAlgorithm);
void EASEAGenerationFunctionBeforeReplacement(CEvolutionaryAlgorithm* evolutionaryAlgorithm);


class EvolutionaryAlgorithmImpl: public CEvolutionaryAlgorithm {
public:
	EvolutionaryAlgorithmImpl(Parameters* params);
	virtual ~EvolutionaryAlgorithmImpl();
	void initializeParentPopulation();
};

class PopulationImpl: public CPopulation {
public:
	CCuda *cuda;
public:
Frederic Kruger's avatar
Frederic Kruger committed
648
	PopulationImpl(unsigned parentPopulationSize, unsigned offspringPopulationSize, float pCrossover, float pMutation, float pMutationPerGene, CRandomGenerator* rg, Parameters* params);
649
650
651
652
653
654
655
656
        virtual ~PopulationImpl();
        void evaluateParentPopulation();
	void evaluateOffspringPopulation();
};

#endif /* PROBLEM_DEP_H */

\START_CUDA_MAKEFILE_TPL
kruger's avatar
kruger committed
657
658
NVCC= nvcc
CPPC= g++
659
660
661
LIBAESAE=$(EZ_PATH)libeasea/
CXXFLAGS+=-g -Wall -O2 -I$(LIBAESAE)include -I$(EZ_PATH)boost
LDFLAGS=$(EZ_PATH)boost/program_options.a $(LIBAESAE)libeasea.a -lpthread
kruger's avatar
kruger committed
662
663
664
665

#USER MAKEFILE OPTIONS :
\INSERT_MAKEFILE_OPTION#END OF USER MAKEFILE OPTIONS

666
CPPFLAGS+= -I$(LIBAESAE)include -I$(EZ_PATH)boost
667
NVCCFLAGS+= --compiler-options -fpermissive
kruger's avatar
kruger committed
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692


EASEA_SRC= EASEAIndividual.cpp
EASEA_MAIN_HDR= EASEA.cpp
EASEA_UC_HDR= EASEAIndividual.hpp

EASEA_HDR= $(EASEA_SRC:.cpp=.hpp) 

SRC= $(EASEA_SRC) $(EASEA_MAIN_HDR)
CUDA_SRC = EASEAIndividual.cu
HDR= $(EASEA_HDR) $(EASEA_UC_HDR)
OBJ= $(EASEA_SRC:.cpp=.o) $(EASEA_MAIN_HDR:.cpp=.o)

BIN= EASEA
  
all:$(BIN)

$(BIN):$(OBJ)
	$(NVCC) $^ -o $@ $(LDFLAGS) 

%.o:%.cu
	$(NVCC) $(NVCCFLAGS) -o $@ $< -c -DTIMING $(CPPFLAGS) -g -Xcompiler -Wall

easeaclean: clean
	rm -f Makefile EASEA.prm $(SRC) $(HDR) EASEA.mak $(CUDA_SRC) *.linkinfo EASEA.png EASEA.dat EASEA.vcproj EASEA.plot EASEA.r EASEA.csv EASEA.pop
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
clean:
	rm -f $(OBJ) $(BIN) 	
	
\START_VISUAL_TPL<?xml version="1.0" encoding="Windows-1252"?>
<VisualStudioProject
	ProjectType="Visual C++"
	Version="9,00"
	Name="EASEA"
	ProjectGUID="{E73D5A89-F262-4F0E-A876-3CF86175BC30}"
	RootNamespace="EASEA"
	Keyword="WIN32Proj"
	TargetFrameworkVersion="196613"
	>
	<Platforms>
		<Platform
			Name="WIN32"
		/>
	</Platforms>
	<ToolFiles>
		<ToolFile
			RelativePath="\CUDA_RULE_DIRcommon\Cuda.rules"
		/>
	</ToolFiles>
	<Configurations>
		<Configuration
			Name="Release|WIN32"
			OutputDirectory="$(SolutionDir)"
			IntermediateDirectory="$(ConfigurationName)"
			ConfigurationType="1"
			CharacterSet="1"
			WholeProgramOptimization="1"
			>
			<Tool
				Name="VCPreBuildEventTool"
			/>
			<Tool
				Name="VCCustomBuildTool"
			/>
			<Tool
				Name="CUDA Build Rule"
				Include="\EZ_PATHlibEasea"
				Keep="false"
				Runtime="0"
			/>
			<Tool
				Name="VCXMLDataGeneratorTool"
			/>
			<Tool
				Name="VCWebServiceProxyGeneratorTool"
			/>
			<Tool
				Name="VCMIDLTool"
			/>
			<Tool
				Name="VCCLCompilerTool"
				Optimization="2"
				EnableIntrinsicFunctions="true"
				AdditionalIncludeDirectories="&quot;\EZ_PATHlibEasea&quot;"
				PreprocessorDefinitions="WIN32;NDEBUG;_CONSOLE"
				RuntimeLibrary="0"
				EnableFunctionLevelLinking="true"
				UsePrecompiledHeader="0"
				WarningLevel="3"
				DebugInformationFormat="3"
			/>
			<Tool
				Name="VCManagedResourceCompilerTool"
			/>
			<Tool
				Name="VCResourceCompilerTool"
			/>
			<Tool
				Name="VCPreLinkEventTool"
			/>
			<Tool
				Name="VCLinkerTool"
				AdditionalDependencies="$(CUDA_LIB_PATH)\cudart.lib"
				LinkIncremental="1"
				AdditionalLibraryDirectories="&quot;\EZ_PATHlibEasea&quot;"
				GenerateDebugInformation="true"
				SubSystem="1"
				OptimizeReferences="2"
				EnableCOMDATFolding="2"
				TargetMachine="1"
			/>
			<Tool
				Name="VCALinkTool"
			/>
			<Tool
				Name="VCManifestTool"
			/>
			<Tool
				Name="VCXDCMakeTool"
			/>
			<Tool
				Name="VCBscMakeTool"
			/>
			<Tool
				Name="VCFxCopTool"
			/>
			<Tool
				Name="VCAppVerifierTool"
			/>
			<Tool
				Name="VCPostBuildEventTool"
			/>
		</Configuration>
	</Configurations>
	<References>
	</References>
	<Files>
		<Filter
			Name="Source Files"
			Filter="cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx"
			UniqueIdentifier="{4FC737F1-C7A5-4376-A066-2A32D752A2FF}"
			>
			<File
				RelativePath=".\EASEA.cpp"
				>
			</File>
			<File
				RelativePath=".\EASEAIndividual.cu"
				>
			</File>
		</Filter>
		<Filter
			Name="Header Files"
			Filter="h;hpp;hxx;hm;inl;inc;xsd"
			UniqueIdentifier="{93995380-89BD-4b04-88EB-625FBE52EBFB}"
			>
			<File
				RelativePath=".\EASEAIndividual.hpp"
				>
			</File>
		</Filter>
		<Filter
			Name="Resource Files"
			Filter="rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav"
			UniqueIdentifier="{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}"
			>
		</Filter>
	</Files>
	<Globals>
	</Globals>
</VisualStudioProject>

\START_EO_PARAM_TPL#****************************************
#
#  EASEA.prm
#
#  Parameter file generated by CUDA.tpl AESAE v1.0
#
#***************************************
# --seed=0   # -S : Random number seed. It is possible to give a specific seed.

######    Evolution Engine    ######
--popSize=\POP_SIZE # -P : Population Size
--nbOffspring=\OFF_SIZE # -O : Nb of offspring (percentage or absolute)

######    Stopping Criterions    #####
--nbGen=\NB_GEN #Nb of generations
--timeLimit=\TIME_LIMIT # Time Limit: desactivate with (0) (in Seconds)

######    Evolution Engine / Replacement    ######
--elite=\ELITE_SIZE  # Nb of elite parents (absolute)
--eliteType=\ELITISM # Strong (1) or weak (0) elitism (set elite to 0 for none)
--survivingParents=\SURV_PAR_SIZE # Nb of surviving parents (percentage or absolute)
--survivingOffspring=\SURV_OFF_SIZE  # Nb of surviving offspring (percentage or absolute)
--selectionOperator=\SELECTOR_OPERATOR # Selector: Deterministic, Tournament, Random, Roulette
--selectionPressure=\SELECT_PRM
--reduceParentsOperator=\RED_PAR_OPERATOR
--reduceParentsPressure=\RED_PAR_PRM
--reduceOffspringOperator=\RED_OFF_OPERATOR
--reduceOffspringPressure=\RED_OFF_PRM
--reduceFinalOperator=\RED_FINAL_OPERATOR
--reduceFinalPressure=\RED_FINAL_PRM

#####   Stats Ouput     #####
--printStats=\PRINT_STATS #print Stats to screen
--plotStats=\PLOT_STATS #plot Stats with gnuplot (requires Gnuplot)
--generateCSVFile=\GENERATE_CSV_FILE
--generateGnuplotScript=\GENERATE_GNUPLOT_SCRIPT
--generateRScript=\GENERATE_R_SCRIPT

kruger's avatar
kruger committed
877
878
879
880
881
882
#### Population save    ####
--savePopulation=\SAVE_POPULATION #save population to EASEA.pop file
--startFromFile=\START_FROM_FILE #start optimisation from EASEA.pop file

#### Remote Island Model ####
--remoteIslandModel=\REMOTE_ISLAND_MODEL #To initialize communications with remote AESAE's
883
884
--ipFile=\IP_FILE
--migrationProbability=\MIGRATION_PROBABILITY #Probability to send an individual every generation
885
\TEMPLATE_END